Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классификация колебательных волновых функций

Классификация колебательных волновых функций  [c.267]

Классификация колебательных волновых функций линейной молекулы по типам симметрии соответствующей точечной группы не представляет труда. Для вырожденных колебаний под действием операций (12.32) углы а преобразуются следующим образом  [c.374]

Теперь рассмотрим классификацию по типам симметрии вращательных и колебательных волновых функций в отдельности. Вращательные и колебательные волновые функции молекулы H N в основном электронном состоянии согласно формулам  [c.372]


Рассмотрим теперь в отдельности классификацию вращательных, торсионных и колебательных волновых функций, раз-  [c.403]

С целью упрощения уравнений рассмотрим классификацию по симметрии колебательно-вращательных волновых функций основного электронного состояния Л = О молекулы H N. В этом частном случае можно довольно легко проследить связь между группой МС и молекулярной точечной группой.  [c.369]

Рассмотрена классификация ровиброниых волновых функций молекулы по типам симметрии группы МС с использованием приближений жесткого волчка, гармонического осциллятора, ЛКАОМО для вращательно-колебательных и электронных орбитальных состояний. Определены также типы симметрии электронных спиновых функций для случаев Гунда (а) и (б) и введено понятие спиновых двойных групп для групп МС. Дано объяснение, почему классификация вращательных волновых функций с полуцелыми вращательными квантовыми числами требует использования спиновой двойной группы. С использованием группы МС определены типы симметрии ядерных спиновых функций, полной внутренней волновой функции Ф, а также ядерные спиновые статистические веса энергетических уровней.  [c.293]

Оператор Н подвергается предварительному преобразованию, заключающемуся в приведении Н к виду Я, диагональному в базисе колебательных волновых функций. Для фиксированного колебательного состояния оператор Й является чисто вращательным оператором. Эта процедура позволяет искусственно разделить колебательную и вращательную задачи, которые могут быть решены независимо. Для выполнения описанного приема применяются различные операторные методы и разновидности матричной теории возхмущений (сформулированные в общем случае в терминах операторов проектирования). Схема классификации множества общих методов стационарной теории возмущений предложена в [18] там же детально обсуждаются особенности каждого из общих методов, включенных в схему [18, 38, 42, 43] и взаимосвязь между ними.  [c.31]

Для получения более точного решения уравнения (7.1) косвенным методом необходимо внести поправки в эти приближения. Поправки, связанные с влиянием ангармоничности, центробежного искажения и кориолисова взаимодействия при решении колебательно-вращательной задачи обычно учитываются методом возмущений, а корреляция электронов при решении электронной задачи — вариационным методом. В конечном счете должны быть учтены также поправки, возникающие из-за нарушения приближения Бориа — Оппенгеймера. Отметим, что для целей классификации молекулярных уровней энергии по тинам симметрии важен вид приближенных волновых функций, поскольку из свойств преобразования этих функций устанавливается тип симметрии уровня энергии.  [c.131]


До сих пор в этой главе группа МС определялась для классификации колебательно-вращательных уровней одного электронного состояния молекулы. Электронные волновые функции молекулы зависят от координат ядер, и для отдельного электронного состояния электронную волновую функцию, а следовательно и ровибронные волновые функции, можно классифицировать в группе МС этого электронного состояния. Иногда бывает необходимо рассмотреть ровибронные уровни более одного электронного состояния, например когда надо выяснить вопрос о взаимодействии между ровиброниыми уровнями, принадлежащими разным электронным состояниям, или рассмотреть электрические дипольные переходы между электронными состояниями. В таких случаях следует обобщить определение группы МС так, чтобы она обеспечивала совместную классификацию ровнбронных уровней более одного электронного состояния.  [c.245]

Для классификации вращательных, колебательных и электронных волновых функций молекулы можно использовать полную перестановочно-инверсионную группу ядер (ППИЯ). Неприводимые представления этой группы являются точными типами симметрии для ровиброниых состояний. Однако для  [c.246]

Точечная группа симметрии для равновесной конфигурации ядер в молекуле определяется легко (см. гл. 3). При использовании точечной группы для преобразования волновых функций молекулы элементы точечной группы рассматриваются как вра-н1ения и отражения вибронных переменных (колебательных смещений и электронных координат) в системе координат, закрепленной в молекуле (см, разд. 5.5 и рис. 5.7 в книге [121]). Молекулярная точечная группа является группой симметрии вибронного гамильтониана, так как расстояния между частицами при действии операций этой группы остаются неизменными. Операции молекулярной точечной группы не влияют на углы Эйлера, компоненты углового момента Ja и ядерные спиновые координаты. Если в гамильтониане мы пренебрегаем членами, связывающими вибронные координаты с другими степенями свободы (особенно с членами кориолисова взаимодействия и центробежного искажения), то мы получаем приближенный гамильтониан, который коммутирует с элементами молекулярной точечной группы. Следовательно, молекулярная точечная группа является группой приближенной симметрии полного молекулярного гамильтониана, а возмущения типа кориолисова взаимодействия и центробежного искажения являются основными эффектами, понижающими симметрию гамильтониана. Поэтому молекулярная точечная группа обычно используется для классификации колебательных и электронных состояний и для изучения вибронных взаимодействий, но не используется для классификации ровибронных состояний. Точечная группа является группой точной симметрии вибронного (и электронного) гавильтониана.  [c.299]

Приближенные квантовые число G и ( 1). Центробежное искажение и кориолисово взаимодействие в симметричном волчке могут смешивать состояния с различными значениями К [см., например, правила отбора (11.105), (11.108)]. Если эти взаимодействия сильные, то число /С теряет смысл даже как приближенное квантовое число. Однако па основании принципов симметрии можно ввести другие квантовые числа G и Gv для классификации колебательно-вращательных состояний молекулы типа симл етричного волчка [54]. Введем эти квантовые числа для частного случая молекулы СНзР. Полную колебательно-вращательную волновую функцию в нулевом приближении можно записать в виде  [c.332]

Теперь рассмотрим классификацию колебательных и электронных волновых, функций по типам симметрии молекулярной точечной группы для линейной молекулы. Элементами точечной группы Dooh являются  [c.373]


Изогнутая трехатомная молекула, образовавшаяся (при возбуждении) из несимметричной линейной молекулы, относится к точечной группе s, а из симметричной линейной молекулы — к точечной группе v с осью симметрии второго порядка (Сг) в плоскости изогнутой молекулы. Для изогнутых молекул с четырьмя, пятью и более атомами, которые образуются из симметричных линейных молекул, точечные группы могут также быть ih, С 2 и i. Более подробно мы рассмотрим только три случая С , - h и s- На фиг. 81 показаны переходы между первыми вращательными уровнями для четырех различных типов изогнуто-линейных переходов в случае, когда верхнее состояние молекулы относится к точечной группе С и, а в нижнем ( Sg) состоянии молекула линейна (точечная группа Do h). Свойства симметрии враш ательпых уровней приведены для четырех типов электронно-колебательных уровней точечной группы С2в- В скобках приводятся соответствуюш ие типы для группы С2h- При этом предполагается, что в случае точечной группы ось С 2 направлена по оси Ь, а в случае С ал — по оси с. Примененная здесь классификация врап ательных уровней по свойствам симметрии соответствует вращательной подгруппе, а не полной группе симметрии (гл. I, разд. 3,г). Для точечной группы s две левые схемы соответствуют состоянию типа А, две правых — состоянию типа А". Кроме того, для этой точечной группы вращательная подгруппа не обладает никакой симметрией, и, следовательно, обозначения А ж В вращательных уровней могут быть опущены. В нижнем состоянии, для которого приведен только самый низкий колебательный уровень (Z = 0), свойства симметрии S ж а онределены, разумеется, лишь для симметричных молекул. Помимо полных типов симметрии, на схеме обозначены также свойства симметрии вращательных уровней (+или—) в соответствии с правилами, приведенными в гл. I, разд. 3,а и 3,г (где рассматривается поведение волновой функции при инверсии).  [c.196]


Смотреть страницы где упоминается термин Классификация колебательных волновых функций : [c.250]    [c.380]    [c.11]    [c.370]    [c.91]   
Смотреть главы в:

Симметрия молекул и молекулярная спектроскопия  -> Классификация колебательных волновых функций



ПОИСК



Волновая функция

Волновые функции колебательные

Колебательные

Колебательный Классификация



© 2025 Mash-xxl.info Реклама на сайте