Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения и гамильтонианы

Уравнения движения и гамильтонианы  [c.53]

УРАВНЕНИЯ ДВИЖЕНИЯ И ГАМИЛЬТОНИАНЫ 55  [c.55]

УРАВНЕНИЯ ДВИЖЕНИЯ И ГАМИЛЬТОНИАНЫ 57  [c.57]

Исключим обобщенные скорости из основных величин, входящих в дифференциальные уравнения движения, и введем в них обобщенные импульсы. Конечно, при этом изменится вид соответствующей функции. Поэтому функции канонических переменных обозначаются ниже дужкой над буквой, обозначающей функцию. Например, функция Лагранжа в канонических переменных обозначается А, обобщенные силы в канонических переменных обозначаются Qj и т. д. Но функция Гамильтона Н в канонических переменных обозначается Н.  [c.145]


Это и будут канонические уравнения движения, данные Гамильтоном. Они будут первого порядка и число их равно шести. Они определяют шесть переменных д,, д , дз, р, Рз, />з в функции времени и шести произвольных постоянных. Для определения движения системы достаточно найти значения параметров д , д , д% в функции времени, так как только они участвуют в определении положения точки.  [c.468]

Это и будут канонические уравнения движения, данные Гамильтоном. Они образуют систему уравнений первого порядка, определяющих ....и р , р2.........р в функции времени и  [c.366]

Прямые пути, т. е. истинные движения при заданной функции L, могут быть охарактеризованы как при помощи дифференциальных уравнений движения в форме Лагранжа, так и при помощи вариационного принципа Гамильтона. Однако между дифференциальными уравнениями движения и вариационными принципами имеется одно принципиальное различие.  [c.106]

В главе 6 указывалось, что первый член ковариантного релятивистского лагранжиана (6.57) является в некоторой степени произвольным. Другая возможная форма лагранжиана получается, если преобразовать принцип Гамильтона (6.48) (перейдя от времени i к местному времени т, являющемуся инвариантом Лоренца) и использовать. новую подынтегральную функцию в качестве L. Получить таким путем выражение для ковариантного гамильтониана частицы, находящейся в электромагнитном поле. Показать, что значение этого гамильтониана равно нулю. (При получении уравнений движения значение гамильтониана, конечно, не существенно, так как нас интересует только его функциональная зависимость от координат и импульсов.)  [c.261]

Точка массы т движется в поле, потенциал которого зависит только от 2 и от л = Найдите производящую функцию, осуществляющую переход к системе координат, равномерно вращающейся вокруг оси z со скоростью со. Каков физический смысл нового гамильтониана Сравните полученный результат с результатом задачи 4 главы 7. Выведите новые канонические уравнения движения и объясните физический смысл каждого члена этих уравнений.  [c.297]

Идея о нахождении фундаментальной функции, из которой при помощи дифференцирования и конечных преобразований без всякого интегрирования могли бы быть получены все решения уравнений движения, принадлежит Гамильтону. Он первый доказал существование такой функции в геометрической оптике, назвав ее там характеристической функцией эта функция оказалась необычайно полезной в целом ряде задач. Позднее, в своих исследованиях по динамике, Гамильтон снова столкнулся с той же самой функцией, назвав ее на этот раз главной функцией . Ввиду общей вариационной основы у оптики и механики, эти две концепции эквивалентны и открытие Гамильтона относится по существу к вариационному исчислению, а специальная форма вариационного интеграла несущественна. (Этот интеграл определяет время в оптическом принципе Ферма и действие в механическом принципе Лагранжа.)  [c.257]


В предыдущем пункте мы использовали время t в качестве независимой переменной. Такой подход не в духе теории относительности, потому что время должно было бы входить на равных условиях по отношению к другим координатам. Это можно сделать, введя параметр г и рассматривая четыре математические координаты qi = Xi (г = 1, 2, 3, 4) как функции -г. Мы следовали такому методу при изучении уравнений движения методом Гамильтона (см. гл. VI, п. 10).  [c.361]

Ведь если задана система сил (уравнения движения) и начальные условия, то каждое последующее положение материальной точки в любой момент времени однозначно определено. Принцип Гамильтона дает уравнения движения механики и, следовательно, отнюдь не противоречит причинно-  [c.867]

ОНТИ, Москва, 1937.— Уравнения Лагранжа и Гамильтона, теория преобразований, уравнение Гамильтона — Якоби, переменные действие—угол, устойчивость, движения твердого тела, возмущения.  [c.440]

Геометрия конечных вращений, винтов и движение твердого тела в пространстве. Уравнения Лагранжа и Гамильтона. Колебания.  [c.441]

Условия (15.9) отражают тот факт, что начальные условия (15.7) не играют главной роли в семействе вариационных принципов Гамильтона. Можно сказать, что основное значение имеет вывод уравнений движения и граничных условий в момент t, начальные условии имеют второстепенное значение.  [c.373]

Замечание. Преобразования, не нарушающие гамильтонову форму уравнений, называются каноническими. Теорема 6.4 о канонических преобразованиях указывает путь интегрирования уравнений движения и непосредственно приводит к уравнению Гамильтона -Якоби.  [c.202]

П2.2 посвящен релятивистской динамике. Обосновывается основной закон движения, а затем с релятивистских позиций в псевдо-евклидовой метрике пространства-времени Минковского проводится обобщение закона Ньютона. Даются релятивистские трактовки теоремы об изменении кинетической энергии, уравнений Лагранжа и Гамильтона.  [c.425]

Стремление к унификации формул аналитической механики приводит к идее рассматривать реономные системы как склерономные с п + 1 обобщённой координатой, включив в это число время. Здесь изучается вспомогательная склерономная система, построенная на основе функционала действие по Якоби. Обсуждается обоснование расширенного принципа Гамильтона-Остроградского вспомогательной системы с применением асинхронного варьирования. Получены уравнения движения и условия трансверсальности.  [c.111]

Кроме обычных, более или менее стандартных курсов высшей математики, для этого потребуются лишь небольшие дополнения из линейной алгебры (сведения по теории матриц и квадратичных форм), дифференциальных уравнений, а также аналитической динамики (уравнения Лагранжа и Гамильтона). Впрочем, в ряде втузов эти дополнения входят в обязательные программы по математике. Программа же по устойчивости движения предполагает всего 30— 40 часов.  [c.12]

Следуя [106], выразим из уравнений движения функцию Гамильтона. Для этого в уравнениях движения (8.23) сделаем замену (здесь мы используем гамильтониан (8.12) и интегралы в форме (8.14) и (8.15))  [c.313]

Заслуживает внимания применение общего уравнения динамики к проблеме приведения [3.43]. В основе метода лежит аппроксимация искомых функций конечными рядами (не обязательно степенными), а затем реализация вариационного принципа, приводящего к приближенным дифференциальным уравнениям и соответствующим краевым условиям. Этим методом Д. В. Бабич в 1966 г. построил динамическую теорию оболочек в криволинейных координатах с учетом несимметричности тензора напряжений [3.14]. Он исходил из аппроксимации компонент вектора перемещений и вектора вращений конечными степенными суммами и из вариационного принципа Гамильтона—Остроградского и вывел дифференциальные уравнения движения и естественные краевые условия.  [c.186]


Чтобы закончить это краткое предварительное рассмотрение, заметим еще, что принятая нами концепция разложения системы на компоненты приводит, как это неоднократно отмечалось, к своеобразному методологическому парадоксу. Как мы указывали уже в самом начале главы I, при всей общности и отвлеченности предпосылок статистической механики построение этого учения все же неизменно предполагает, что составляющие материю частицы находятся в состоянии интенсивного взаимодействия, которое прежде всего мыслится как взаимодействие энергетическое, т. е. как передача энергии от одной частицы к другой (например, посредством столкновений) как мы более подробно увидим далее, именно на возможности такого обмена энергетическими ресурсами между частицами вещества статистическая механика и основывает свой метод. Между тем, принимая частицы, составляющие данную физическую систему, за компоненты ее в определенном нами смысле, мы тем самым исключаем возможность какого бы то ни было энергетического взаимодействия между ними. В самом деле, если функция Гамильтона, выражающая энергию нашей системы, является суммой таких функций, каждая из которых зависит от динамических координат только одной частицы (и служит гамильтоновой функцией этой частицы), то, очевидно, и вся система уравнений (1) распадается на системы, каждая из которых описывает движение одной какой-нибудь частицы и никак не связана с прочими частицами поэтому энергия каждой частицы, выражаемая ее гамильтоновой функцией, служит интегралом уравнений движения и, следовательно, не может подвергаться никаким изменениям.  [c.31]

В предыдущей статье [3] была рассмотрена нелинейная теория установившегося течения жидкости большой глубины вдоль слабо модулированной волнообразной стенки. При этом использовалась теория Уизема [6, 7], описывающая дисперсию плавно изменяющихся цугов волн большой амплитуды. Метод основан на предположении, что локально цуг волн хорошо аппроксимируется идеально периодическим решением полных нелинейных уравнений движения и последующим вычислением среднего лагранжиана через волновые параметры. Дисперсионное уравнение, описывающее медленные изменения этих параметров, получается затем применением принципа Гамильтона.  [c.215]

Материальная точка массы т подвешена с помощью стержня длины / к плоскому шарниру, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью (U (см. рисунок к задаче 49.4). Составить функцию Гамильтона и канонические уравнения движения. Массу стержня не учитывать.  [c.374]

Пользуясь результатами, полученными при решении предыдущей задачи, и свойствами полного интеграла уравнения Якоби — Гамильтона, найти первые интегралы уравнений движения точки.  [c.376]

Пример 87. Свободная материальная точка массой т движется в потенциальном поле. Найти функцию Гамильтона и составить канонические уравнения, движения этой точки, если силовая функция поля равна U х, г/, г).  [c.372]

Определить функцию Гамильтона и составить канонические уравнения движения шарика, рассматривая его как материальную точку,  [c.373]

Это последнее утверждение играет важную роль потому, что оно позволяет положить в основу классической механики в качестве исходного постулата не второй закон Ньютона (или его ко-вариантную запись — уравнения Лагранжа), а вариационный принцип Гамильтона. Действительно, по крайней мере Для движений в потенциальных полях, постулируя вариационный принцип Гамильтона, можно получить из него как следствие уравнения Лагранжа. В теоретической физике иногда оказывается удобным вводить исходную аксиоматику в форме соответствующего вариационного принципа, устанавливающего общие свойства движения в глобальных терминах, и уже из этого принципа получать уравнения движения.  [c.280]

Обратим теперь внимание на следующую особенность интегрального инварианта Пуанкаре — Картана. Если в дифференциальных уравнениях движения —все равно в уравнениях Лагранжа или Гамильтона — время t было выделено и входило иначе, чем координаты, так как по времени велось дифференцирование, то в контурный интеграл (85) дифференциал dt входит совершенно так же, как дифференциалы dqj. Если бы мы рассматривали время как дополнительную координату <7 +i, а в качестве импульса, соответствующего зтой координате, взяли гамильтониан с обратным знаком 1), то контурный интеграл (85) можно было бы переписать так  [c.296]

Принцип Гамильтона можно применять не только для вывода уравнений движения систем дискретных материальных точек, но и для описания движения непрерывных сред.  [c.614]

В заключение параграфа отметим, что все рассматривавшиеся ранее возможности интегрирования уравнений движения, основанные на использовании циклических координат, охватываются методом разделения переменных. К ним добавляются еще случаи, когда разделение переменных возможно, хотя координаты и не оказываются циклическими. Тем самым метод Гамильтона-Якоби представляет собой наиболее эффективный метод аналитического интегрирования уравнений движения.  [c.656]

На примере циклических координа.т мы видели (см. 8.4), что успех интегрирования систем дифференциальных уравнений, описывающих движение механических систем, в значительной мере зависит от удачного выбора лагранжевых координат. При переходе от одних лагранжевых координат к другим будут по определенному закону изменяться и обобщенные импульсы, так что в новых фазовых переменных уравнения движения вновь примут вид канонических уравнений Гамильтона. Произвольные преобразования фазовых координат таким свойством, вообще говоря, обладать не будут. Интегральный инвариант Пуанкаре (определение 9.5,1) позволяет, подходя с единых позиций как к преобразованию лагранжевых координат, так и обобщенных импульсов, выделить специальный класс преобразований фазовых переменных, не нарушающих структуру канонических уравнений движения.  [c.680]


В новых переменных уравнения движения имеют форму уравнений Гамильтона и задаются функцией Н — сН дW д . Но г = 1,..., п, будучи первыми интегралами движения, не изменяются с изменением времени = О, г = Отсюда дН /дг1 = 0.  [c.695]

Для вывода уравнений движения локальные перемещения, определяемые равенством (28), подставляются в соотношения упругости для волокон и связующего. Плотность энергии деформации в каждом элементе интегрируется по локальным координатам (при фиксированном х) и для того, чтобы получить плотность энергии деформации V (и, Ф) в точке х, делится на объем элемента. Аналогично получается плотность кинетической эхтергии Т (и, Ф) в точке X. Уравнения движения и граничные условия записываются с помощью принципа Гамильтона в виде  [c.294]

Предлагаемая вниманию читателя очень коротенькая книжка английского ученого Лича тоже посвящена теоретической механике. Но в ней нет ни подробного разбора частных задач, ни исследования каких-либо отдельных механических систем, примечательных по характеру их движения. В книге Лича содержится в достаточно лаконичном виде изложение самых основных вопросов и теорий аналитической механики, вызванных к жизни известными уравнениями Лагранжа и Гамильтона. И главная цель автора состояла в том, чтобы надлежащим изложением методов аналитической механики в их классическом виде привести читателя книги к пониманию аналитической механики непрерывных сред и особенно к знакомству с осног-ными вопросами механики специальной теории относительности и началами теории поля. Этим последним вопросам отведена примерно треть книги.  [c.5]

Метод основан на комбинации принципов вариационного исчисления-с частными производными и может рассматриваться математиками как особая ветвь алгебры, которая может быть названа исчислением главной функции, потому что во всех важных приложениях алгебры к физике и в очень широком классе чисто математических вопросов этот метод сводит определение многих взаимно связанных функций к отысканию и изучению главного или центрального соотношения. В приложениях этого метода к динамике (прежде этот метод был применен к оптике) профессор Гамильтон открыл существование главной функции, которая, если ее форма полностью известна, дает по определении ее частных производных все первые и все конечные интегралы известных уравнений движения. Профессор Гамильтон придерживается мнения, что математическое объяснение всех явлений материи, отличных от жизненных явлений, будет окончательно найдено в зависимости от свойств системы отталкивающихся или притягивающихся точек. И он думает, что те,, кто не одобряет его мнения во всей его общности, могут все же признать при современном состоянии науки свойства таких систем более важными, чем какая-либо другая область приложения математики к физике. Он, таким образом, считает фундаментальной проблемой динамики определить Зп прямоугольных координат или других характеристик положения свободной системы притягивающихся и отталкивающихся точек как функции времени , включающих, следовательно, 6п начальных постоянных, которые зависят от начальных условий движения, и включающих, кроме того, п других констант, называемых массами, которые измеряют на стандартном расстоянии притягательные и отталкивательные действия (energies). Обозначая эти п масс через т , т ,..., т и их Зп прямоугольных координат — через Xi,y ,Zi,. .., х , у , и, следовательно, 3 компонентов ускорения или вторых производных этих координат по времени — через х , У , . ..  [c.284]

G. Herrmann и A. E. Armenakas, исходя из соотношений нелинейной теории упругости и принципа Гамильтона—Остроградского, получили уточненные уравнения движения и контурные условия для цилиндрической оболочки при различных нагрузках [3.1041 (1963). Из этих уравнений при некоторых допущениях следуют классические уравнения типа Флюгге—Тимошенко и Донелла.  [c.204]

Составить функцию Гамильтона и канонические уравнеипя движения для математического маятника массы гп и длины /, положение которого определяется углом ф отклонения его от вертикали. Проверить, что полученные уравнения эквивалентны обычному дифференциальному уравнению движения математического маятника.  [c.374]

Предположим, что некоторая функция f q, р, О = onst является первым интегралом уравнений движения. Вычислим производную d[[q t), p t), tydt, где q t) и p( ) —решения уравнений Гамильтона.  [c.267]

Существует беоконечное число полных интегралов уравнения Гамильтона—Якоби (132). Каждый из них порождает соответствующее преобразование, т. е. определяет движение, но все они описывают одно и то же движение и различаются лишь тем, как вводятся произвольные постоянные а.  [c.324]

Следствие 9.5.4. Существование интегрального инварианта Пуанкаре-Картана есть необходимое и достаточное условие того, чтобы движение еистемы опиеывалось каноническими уравнениями с функцией Гамильтона, входящей в выражение инварианта. Инва-риантноеть интеграла Пуанкаре-Картана может быть положена в основу механики голономных еистем е потенциальными силами.  [c.666]


Смотреть страницы где упоминается термин Уравнения движения и гамильтонианы : [c.399]    [c.301]    [c.31]    [c.7]    [c.179]    [c.278]    [c.297]   
Смотреть главы в:

Метод функций Грина в статистической механике  -> Уравнения движения и гамильтонианы



ПОИСК



Гамильтониан

Уравнение анергии Q (х, у) 0 и гамильтониан Вторая форма принципа Гамильтона. Гамильтоновы канонические уравнения движения



© 2025 Mash-xxl.info Реклама на сайте