Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материал сварных конструкций

При выборе материала сварных конструкций энергоустановок, работающих при высоких температурах, специального рассмотрения заслуживает вопрос об уровне свойств стали при комнатной температуре. Наиболее важной характеристикой, которая должна при этом учитываться, является пластичность и вязкость материала при комнатной температуре.  [c.23]

Приведенные соображения показывают важность сохранения пластичности и вязкости материала сварных конструкций энергоустановок при комнатной температуре. Указанное требование является особенно необходимым для изделий, имеющих сложную форму, например отливок и поковок арматуры, цилиндров и др.  [c.24]


Свариваемость общая — определяется испытаниями, оценивающими способность материала сварной конструкции выдерживать напряжения, присущие этой конструкции, как в процессе ее изготовления (при сварке), так и при последующей эксплуатации. Испытания на общую свариваемость подразделяются на 2 раздела один включает испытания на склонность к трещинообразованию, другой — на чувствительность к надрезу.  [c.106]

Материал сварных конструкций  [c.14]

Из отмеченного выше следует, что материал сварных конструкций должен обладать таким комплексом свойств, которые обеспечивали бы высокие прочностные характеристики сварных соединений при применении сравнительно простых технологических приемов сварки (без предварительного подогрева, последующей термической обработки и других специальных мер). Более того, материал сварных конструкций должен обладать не только определенными свойствами, обеспечивающими его высокую эксплуатационную прочность, но он должен также обладать достаточной технологической прочностью, т. е. он должен выдерживать без разрушения усилия, возникающие в процессе сварки.  [c.14]

Достоинства сварных соединений. 1. Экономия материала (сварные конструкции в среднем легче клепаных на 20... 25%). 2. Плотность и непроницаемость соединений (клепаные резервуары, котлы и другие емкости, находящиеся под давлением, заменены сварными). 3. Возможность соединения деталей любых криволинейных профилей произвольной толщины. 4. Трудоемкость сварного соединения значительно меньше заклепочного (исключены разметка и сверление или продавливание отверстий), 5. Стоимость мелкосерийных сварных конструкций примерно в два раза ниже стоимости стального литья или поковок, 6. Бесшумность технологического процесса сварки и возможность ее автоматизации.  [c.274]

Требование технологичности - одно из основных, которое должно учитываться при проектировании конструкции, так как трудоемкость конструкции, сроки ее изготовления и ее экономичность в значительной мере определяются тем, насколько полно выполнены требования технологичности при выборе материала и конструктивных форм сварного изделия или сооружения. Учет технологичности при проектировании сварной конструкции означает, что выбранный материал сварной конструкции допускает сварку обычными приемами, не требуя каких-либо условий, осложняющих производство, а принятые конструктивные формы способствуют применению при изготовлении конструкции наиболее прогрессивных процессов автоматической сварки и других высокопроизводительных ТП, что принятое конструктивное решение требует минимального количества элементов, что в каждом элементе используется минимальное число  [c.96]


Термины и определения, относящиеся к сварке (процесс сварки, виды сварных соединений, сварные швы и т. д.), установлены Г(ХТ 2601—74. Сваривать можно металлы, стекло, некоторые виды пластмасс и т. д. Применение сварки вместо клепки позволяет экономить материал, облегчать конструкцию, уменьшать трудоемкость производственных процессов, облегчать условия работы и т. д.  [c.194]

Диагностика технического состояния и оценка ресурса аппаратов являются специальной дисциплиной, на базе которой формируются знания по обеспечению надежности и безопасности эксплуатации длительно проработавших сварных конструкций оболочкового типа. К числу отличительных черт нефтеперерабатывающих и нефтегазохимических производств следует отнести наличие значительной доли потенциально опасных объектов, выработавших проектный срок эксплуатации или не имеющих расчетного срока эксплуатации. Износ основного технологического нефтегазохимического оборудования достиг 80-90%, и оно естественно нуждается в замене. Поддерживать работоспособное состояние оборудования не представляется возможным без решения проблем диагностики современными достоверными методами и оценки остаточного ресурса. Параметры эксплуатации такого оборудования (рабочая температура и давление, рабочая среда и т.д.) охватывают очень широкие интервалы и весьма различны по воздействию на материал. Им присуще разнообразие по конструктивным оформлениям и по применяемым методам формоизменяющих операций при изготовлении. В процессе эксплуатации в металле конструктивных элементов оборудования происходит постепенное накопление необратимых повреждений и по истечении определенного времени возможны преждевременные их разрушения.  [c.3]

При выборе материала заготовки следует учитывать не только его эксплуатационные свойства, но и его свариваемость. Сварка материала не должна ухудшить работу сварной конструкции в реальных условиях эксплуатации. Например, если конструкция работает При НИЗКИХ температурах, то материал заготовки должен обеспечить после сварки металлу сварного шва и околошовной зоны порог хладноломкости ниже предполагаемой температуры экс-  [c.159]

Эффективным направлением является использование в различных частях сварных конструкций разнородных материалов, наиболее полно отвечающих требованиям эксплуатации, применение двухслойного проката со специальными свойствами облицовочного слоя и других сочетаний. Примером может служить ротор газовой турбины. По ободу диск ротора подвергается действию высоких температур и относительно небольших усилий, а центральная часть работает в условиях невысоких температур и воздействия больших усилий Подобрать материал, одинаково хорошо работающий в этих условиях, очень трудно. Поэтому целесообразно изготовить сварной ротор центральную часть из высокопрочной стали перлитного класса, а обод диска из жаропрочной аустенитной (рис. 6.21).  [c.171]

При вибрационной нагрузке следует переходить на стыковые соединения (рис. 14.16, о). Соединения внахлестку применяют только для неответственных конструкций при статической нагрузке. Допускаемое напряжение для материала сварного шва  [c.377]

Межкристаллитная коррозия (рис. 9) типична для коррозион-но-стойких сталей, проходит между кристаллами и поражает границы зерен. Склонность к коррозии появляется при неправильной термической обработке сталей, которые теряют прочность и вязкость. В первую очередь этот вид коррозии проявляется в виде растрескивания поверхности, а затем и полного распада. С точки зрения разрушения наиболее опасным местом сварных конструкций из аустенитных сталей является зона основного материала, прилегающая к металлу сварного шва. Так называемая ножевая коррозия напоминает по форме надрез ножом в узкой зоне на границе металла шва и основного g  [c.25]

Отвал бульдозера — сварная конструкция, разрушение которой связано прежде всего с наличием концентраторов напряжений в местах сварки. Для разных типов отвалов интенсивность их разрушений при низких температурах различна, но во всех случаях достаточно высока (рис. 36, а — г). Основной тип исследуемого отвала — отвал бульдозера Д-271. Для изготовления отвала применяется сталь с низкими прочностными свойствами, склонная к хладноломкости (табл. 11). Так, ударная вязкость материала (образцы вырезались из реальных деталей) снижается с 6,5—3,8 кгс-м/см,2 при температуре 20°С до 4,0—0,6 при температуре —30°С. Разброс значений ударной вязкости можно объяснить значительным колебанием, химического состава, а также разным временем, которое отработала каждая деталь до момента разрушения.  [c.92]


Во многих случаях конструктивные размеры определяются требованиями прочности. В случаях, когда существует риск коррозионного растрескивания под напряжением (см. 4.11), необходимо убедиться, что растягивающие напряжения не превосходят верхнего предела, который с точки зрения коррозионного растрескивания допустим для данного сплава. При переменной нагрузке необходимо убедиться, что не превышен предел усталости. Иначе может произойти усталостное или коррозионно-усталостное повреждение (см. ри. 4.11). Опасность растрескивания от коррозии под напряжением, усталости или коррозионной усталости особенно велика там, где имеются концентраторы механических напряжений, например надрезы и маленькие отверстия, а также места резкого изменения формы. Эти неоднородности должны быть учтены путем введения коэффициента формы при силовом расчете размеров конструкции. В случае сварных конструкций необходимо также принимать во внимание, что прочность материала, а также его сопротивление коррозионному растрескиванию под напряжением, усталости и коррозионной усталости в месте шва или около него бывает часто пониженным.  [c.94]

На определенном расстоянии по обе стороны сварного шва находятся области, нагревающиеся до критических температур. Здесь по границам зерен пересыщенного аустенита выделяются карбиды, богатые хромом. В результате того что устойчивость по границам зерен уменьшается, в агрессивных средах идет межкристаллитная коррозия. Образование карбидов зависит не только от температуры, но и от продолжительности ее воздействия. Влияние этих факторов определяется химическим составом основного материала и его структурой. Для сварки непригодны стали, при нагревании которых в области критических температур по границам зерен образуется карбид хрома. Поэтому для изготовления сварных конструкций широко применяются стали, стабилизованные титаном, ниобием или танталом, а также стали с низким содержанием углерода, при сварке которых не выделяются карбиды. В большинстве случаев их использования межкристаллитная коррозия в зонах, расположенных на определенном расстоянии от сварного шва, не наблюдается.  [c.100]

Наличие скачков на R-кривых и на диаграммах нагрузка — смещение у никелевых сталей является предметом для обсуждения. Эти скачки представляют собой быстрый рост трещины с последующей его остановкой. Остановки могут быть связаны с характеристиками вязкости материала, но могут быть также результатом падения приложенной нагрузки из-за жесткости испытательной машины. Результаты определения вязкости разрушения, полученные в настоящей работе, дают более полную характеристику свойств материала и призваны помочь при выборе материала в каждом конкретном случае его применения. Проведенные испытания показывают, что работоспособность сварной конструкции, изготовленной из сталей, легированных никелем, зависит от свойств зоны термического влияния. Это необходимо учитывать наряду с расчетными, технологическими и экономическими факторами при окончательном выборе материала.  [c.219]

Листовой материал, трубы для гидравлических систем Сварные сосуды, работающие под давлением в морских условиях, в автомобилестроении, авиации, криогенной технике, в военной технике, а также для телевизионных вышек, транспортного оборудования, компонентов реактивных снарядов Перспективный листовой материал для авиационной техники Сварные конструкции, сосуды, работающие под давлением, морская техника  [c.153]

Крупнейшим достижением явилась разработка в 1949—1951 гг, в Институте электросварки им, Е. О. Патона высокоэффективной электрошлаковой сварки. При электрошлаковой сварке, в отличие от автоматической под флюсом, электрическая энергия превращается в тепловую не при помощи электрической дуги, а при прохождении ее через расплавленный шлак (отсюда и название способа). Сущность способа состоит в том, что расплавленный шлак, будучи нагрет до очень высокой температуры, оплавляет кромки свариваемых изделий и расплавляет присадочный электродный материал. Это крупнейшее достижение советской сварочной техники, получившее мировую известность, подняло технику сварки на новую, более высокую ступень и внесло громадные изменения в конструкцию, технологию и организацию производства массивных крупногабаритных изделий, решив весьма важный для дальнейшего развития техники вопрос качественной и высокопроизводительной сварки металла практически неограниченной толщины и механизации сварки вертикальных швов. Электрошлаковая сварка стала ведущим методом при изготовлении барабанов паровых котлов и сосудов высокого давления, прокатного оборудования, мощных прессов, валов крупных гидротурбин и гидрогенераторов, доменных комплексов и т. д. Она позволила эффективно заменить литые и кованые изделия сварными, что резко сократило трудоемкость и цикл изготовления конструкций, способствовало экономии металла, снижению стоимости изделий, позволило отказаться от строительства ряда крупных кузнечно-прессовых и литейных цехов и дало огромную экономию в народном хозяйстве. С широким применением электрошлаковой сварки в 50-х годах началось эффективное производство крупногабаритных комбинированных сварных конструкций в тяжелом машиностроении.  [c.125]

Для изготовления крупногабаритных корпусных деталей (корпуса, крышки, фонари, бугели, диски и др.) применяются различные способы. Крупногабаритные литые детали трудно получить одинаково высокой прочности во всех сечениях без рыхлостей, раковин и других дефектов, поэтому достаточно широко применяются и сварно-литые и штампо-сварные конструкции, в которых детали получаются путем сварки отдельных элементов простой формы в одну деталь сложной формы. Таким путем получают детали повышенной прочности и создают возможность тщательного контроля свойств материала, что повышает надежность конструкции. В качестве заготовок для элементов корпусов задвижек используются штамповки, литье или отрезки труб.  [c.32]


Материал фундаментных рам — чугун СЧ-15—32 или СЧ-18—36 для тяжёлых двигателей и стальное литьё или сварная конструкция для лёгких. В случаях применения анкерных связей рамы лёгких дизелей могут быть отлиты также из легированного чугуна (с присадкой хрома и никеля), обеспечивающего однородную структуру отливки и возможность отливать тонкие стенки.  [c.71]

В качестве материала для изготовления ползунов применяются чугун марки СЧ 21-40 и СЧ 24-44 почти для всех типов прессов простого действия стальное литьё с содержанием углерода 0,35—0,4% для прессов тяжело нагружённых, а также предназначенных для горячей штамповки и калибровки стальные плиты для прессов сварной конструкции.  [c.675]

Сварка винипласта. Наиболее широко сварка нагретым воздухом используется при изготовлении сварных конструкций из винипласта. Прочность сварных соединений в значительной мере зависит от технологического режима сварки (температуры и количества подаваемого воздуха, диаметра сопла горелки и сварочного прутка, толщины свариваемого материала, и т. д.).  [c.188]

Материал и заготовки Корпусы и коробки выполняются в виде чугунных, стальных или алюминиевых отливок, а также в виде сварных конструкций. Чугунные отливки должны удовлетворять требованиям ГОСТ 1412-54. При этом для более ответственных корпусных де талей (блоки цилиндров двигателей, корпусы коробок скоростей особо точных и быстроходных станков и автоматов и др.) используется чугун СЧ 28-48, СЧ 24-44, СЧ 21-40 корпусные детали станков, корпусы редукторов, картеры стационарных двигателей и тому подобные детали выполняются из чугуна СЧ 18-36, СЧ 15-32 для менее ответственных отливок применяется чугун СЧ 12-28.  [c.544]

Повышенная стоимость теплообменных аппаратов ядерных установок объясняется сложностью конструкции, обусловленной специфическими свойствами теплоносителей, необходимостью пооперационного технологического контроля, условиями эксплуатации, применением дорогих и сложных в обработке материалов, усложнением производства и трудностью технологического контроля аппарата (приварка или высокотемпературная пайка труб к трубным доскам, радиометрический контроль сварных швов, проба материала сварных швов на межкристаллитную коррозию и т. д.).  [c.43]

Основным видом образцов сварных соединений для испытания на длительную прочность, как и при кратковременных испытаниях, являются образцы с поперечным швом. При этом, в зависимости от типа свариваемых изделий, форма образцов может изменяться. В большинстве случаев испытания ведутся на круглых десяти- или пятикратных образцах диаметром 8 или 10 мм. В случае сварки тонколистового материала используются плоские образцы, а для оценки свойств сварных стыков труб малого диаметра—трубчатые образцы. В пп. 2, 3 и 4 приведены значения пределов длительной прочности большинства используемых в сварных конструкциях энергоустановок сталей там же приведены указанные характеристики для металла швов и сварных соединений.  [c.22]

Как показывает опыт изготовления и эксплуатации сварных конструкций энергоустановок, работающих при высоких температурах, хрупкость материала при комнатной температуре может в определенных случаях привести к разрушению изделия при отсутствии рабочих напряжений. Необходимо учитывать, что непосредственно после сварки в изделии возникают остаточные напряжения, имеющие в массивных узлах характер реактивных сварочных напряжений (глава III). Скрытая энергия, накопившаяся в изделии при наличии в нем реактивных напряжений, может достигать очень высоких значений, превосходящих величину энергии, которая может быть поглощена хрупким материалом, особенно при наличии различных концентраторов напряжений в виде резкого изменения формы сечения или дефектов в швах (непроваров, трещин и других). В этих условиях зародышевая трещина, идущая от концентратора напряжений, будет развиваться дальше, приводя к полному разрушению конструкции. При сборке, гидравлических испытаниях узла в процессе пуска установки конструкция также подвергается воздействию напряжений при комнатной температуре. При наличии конструктивных концентраторов напряжений и хрупком материале и в этих случаях может произойти разрушение изделия.  [c.24]

Tjiraiz об. 7адает высокой прочностью до температур 450—500° С при ма. той плотности, высокой коррозионной стойкостью во многих агрессивных средах и все шире применяется в качестве кон-струиционного материала в сварных конструкциях различного назначения.  [c.362]

Удовлетворяющую этому требованию Хромоникелевую сталь марки Х18Н9Т применяют для сварных конструкций. Легирование стали ниобием (сталь 0Х17Н12Б) в ряде случаев дает больший эффект, чем легирование титаном. Кроме того, ниобий меньше, чем титан, подвержен выгоранию, поэтому в качестве присадочного материала при сварке применяют электродную проволоку из стали, легированной ниобием.  [c.424]

В предыдущей главе на основании разработанных методов были рассмотрены подходы к оценке циклической прочности элементов сварных конструкций было показано, что технологические напряжения, обусловленные процессом сварки, в ряде случаев оказывают значительное влияние на долговечность элементов конструкций. В настоящей главе будет рассмотрено влияние технологических напряжений (несварочного происхождения) на длительную прочность конструкций. Как и в предыдущей главе, для решения такой задачи задействован комплекс методов анализа деформирования и повреждения материала, изложенный в главах 1 и 3. В качестве примера выбран коллектор парогенератора ПГВ-1000.  [c.327]

Генеральное конструктивное оформление обычно предопределяется предшествующим опытом создания изделий данного типа. На-HjioTHB, иыбор формы и размеров отдельных элементов определяется параметрами и особенностями конкретной проектируемой конструкции. При проектировании этих элементов одновременно с выбором материала и метода получения заготовок конструктор назнач21бТ расположение сварных соединений, их тип и способ сварки. Таким образом, основные вопросы технологичности сварных конструкций решаются уже на первом этапе проектирования путем умелого использования больших возможностей компоновки из отдельных заготовок и применения наиболее прогрессивных приемов изготовления с помон ыо сварки.  [c.5]

Принцип минимального удельного расхода материалов. Стоимость материалов и полуфабрикатов в машиностроении составляет от 40 до 80 % общей себестоимости продукции. Поэтому снижение удельного расхода материала на единицу продукции имеет большое народнохозяйственное значение. Например, при снижении расхода проката на 1 % по стране экономится 600 тыс. т металла в год, что позволяет изготовить 200 тыс. тракторов или 450 тыс. легковых автомобилей Москвич . При стандартизации заготовок и изделий экономию металла можно получить в результате использования рациональных конструктизных схем и компоновок машин, совершенствования методов расчета деталей на прочность и обоснованного снижения запаса прочности, применения экономичных профилей, периодического проката, сварных конструкций, пластмасс, литых заготовок, особенно лнтья по выплавляемым моделям. Так, внедрение на Коломенском тепловозостроительном заводе им. Куйбышева Л1ГГЫХ коленчатых валов из высокопрочного чугуна (длиной свыше 4 м, массой 1450 кг) дало 2 т экономии металла на один вал.  [c.45]


Последнее обстоятельство является весьма важным и свидетельств) -ет о том, что при выборе того или иного присадочного материала необходимо предварительно знать, обеспечивается ли при заданных параметрах сварного соединения (А д, к) и >словиях нагружения оболочковой конструкции п (или типе оболочки) требования по запасу пластичности металла шва Лр. В противном случае при экспл> атации конструкции в наиболее нагр женной части мягкого шва может произойти локальное разрушение (Л = Лр), что приведет к разрушению всей конструкции. С точки зрения силового подхода данные условия сводятся к тот, чтобы в процессе нагружения сварных конструкций, ослабленных мягким швом, наибольшие напряжения в центральной части шва не превышали своего предельного значения — сопротивления микросколу определяющегося ресурсом пластичности металла /129/. Характеристика не зависит от температу ры и скорости нагружения и нашла хорошее практаческое применение при анализе разрушения материалов в у словиях их апастического деформирования /130, 131/. В работе /129/ нами была установлена связь данной силовой характеристики с ресурсом пластичности металла в виде  [c.195]

Определить номер профиля уголков и длину щвов сварной конструкции соединения. Сравнить по весу сварную конструкцию узла с клепаной. Материал уголков — сталь с допускаемым напряжением [СТр] = 140МПа.  [c.24]

Рассмотрим условия, опреде.пяющие долговечность элемента конструкции на стадии развития трещины. Как указывалось, число циклов, соответствующее росту трещины от начальной длины и до критической /с, определяет долговечность данного элемента конструкции по числу циклов. Чтобы обеспечить прочность конструкции, долговечность должна быть больше числа перемен заданной нагрузки. Таким образом, наряду с оценкой материала по классической кривой Велера, существенную информацию о поведении элемента конструкции с трещиной в условиях усталости должна дать механика разрушения. Следовательно, в данном случае, как обычно, надо исходить из того, что начальный трещиноподобный дефект существует в конструкции с момента ее изготовления (несмотря на дефектоскопический контроль, который, как известно, имеет определенный допуск на размер не-обиаружпваемых дефектов). К сварным конструкциям это относится в большей мере, и в этом случае желательно иметь критические значения коэффициентов иитеисивиости напряжений (Кс или Я/с) для основного материала, материала шва и материала переходной, термически поврежденной, зоны. Кроме этого, для сварных конструкций я елательно в области сварного шва знать величину и распределение остаточных напряжений. Все это вместе взятое способствует уточнению расчетов.  [c.272]

Крышка турбины, опора пяты, верхнее и нижнее кольца относятся к стационарным деталям направляющего аппарата. Состоят они, как правило, из нескольких частей (секторов), габариты которых определяются условиями транспортировки и производства. Число секторов принимают четным, чтобы иметь сквозные меридианные разъемы, необходимые при обработке стыков. Выполняются эти детали сварными из проката МСтЗ, реже литыми из стали 20ГСЛ или ЗОЛ. Можно применять высокопрочный чугун ВПЧ 40-5, хорошо зарекомендовавший себя на Камской ГЭС. Выбор материала зависит от напряженного состояния деталей и условий производства. В последние годы в отечественном гидротурбостроении преимущественное применение нашли сварные конструкции. Они отличаются наименьшей затратой материалов для заготовок и наименьшей массой, требуют меньших припусков на обработку, позволяют точно выдерживать толщину стенок, в них отсутствуют внутренние и поверхностные дефекты, неизбежные в отливках, их фактическая прочность больше соответствует расчетным значениям. Общим недостатком сварных конструкций является наличие остаточных напряжений и вызываемых ими деформаций. Для устранения этих напряжений обязательно применение термической обработки (отпуска и нормализации) после сварки. Допустимые деформации сварных деталей должны находиться в пределах припусков на обработку.  [c.96]

Инфо-рмация, по.чученная при испытаниях натурных объектов, дает конкретный материал проектантам и технологам северных сварных конструкций, а также позволяет наиболее обоснованно судить о достоверности тех или иных критериев оценки хладостойкости сварных соединений.  [c.64]

В сложной сварной конструкции селективный характер усталостных повреждений вытекает не только из концентрации напря-ншний, но и из меняющихся свойств материала и его сопротивляемости разрушению. Рассматривая формулы (3) и (4), видим, что максимальное различие, определяющее развитие усталостного процесса, возникает тогда, когда местная нагрузка возрастает, т. е. когда сопротивляемость разрушению материала уменьшается. Без учета сопротивляемости разрушению материала в конструкции возможна ошибочная оценка усталостной прочности, скорости и направления развития усталостных трещин, в общем ошибочный анализ всего процесса и прогнозирования механизмов разрушения.  [c.266]

Рассматриваемые стали широко применяются в строительстве и машиностроении СтО — неответственные элементы конструкций Ст1 — связевые соединения, анкерные болты Ст2 — элементы неответственных сварных конструкций, оконные переплеты, заклепки СтЗ — в горячекатаном состоянии основной материал в строительстве в виде сортового, фасонного и листового проката, детали машиностроения, не подвергающиеся термической обработке Ст4 — строительные конструкции повышенной прочности, детали машиностроения в нетермообработанном и улучшенном состоянии Ст5, Стб, Ст7 в горячекатаном и термообработанном состояниях — детали машиностроения с повышенной прочностью.  [c.67]

Малопластичный материал, механическая обработка затруднена, не сваривается. Электронагревательные элементы. До 1200° С Жаростойкие стали (сильхромы) с повышенной окалиностойкостыо в серусодержащих газах. Для сварных конструкций не применяются. Детали клапанов двигателей, трубы рекуператоров печей нефтехимических заводов, детали насосов. Сталь Х6СМ —до 700° С, сталь 40Х9С2— до 850° С Жаростойкая сталь. Детали печей для термообработки  [c.39]

Х23Н28МЗДЗТ Сварные конструкции, стойкие к действию серной кислоты различных концентраций при повышенных температурах (<80° С), а также к действию кремнефтористоводородной кислоты и других соединений (оросительные и спиральные холодильники, теплообменники и др.)- В качестве присадочного материала при сварке рекомендуется проволока при 0,02% С той же марки (ЭП-51б). Обладает удовлетворительной сопротивляемостью меж кристаллит ной коррозии  [c.45]

Теплообменные элементы погружного типа применяют для нагрева или охлаждения агрессивных сред в аппаратах с мешалками, в гальванических ваннах и т. д. Элемент состоит из стакана, изготовленного из пропитанного графита, диаметром 100, 150 или 200 мм, длиной 1000—2000 мм, графитового фланца и сварной конструкции. Теплообменные элементы выпускают с поверхностью теплообмена 0,57—2,40 на рабочее давление до 4 или до 5 кПсм . Допускаемая рабочая температура зависит от материала уплотнительных прокладок, но не должна превышать 170° С. Вес элемента вместе с металлической частью 20—105 кг.  [c.389]

В целях дальнейшего повышения качества и зффектавности ЭЛС применяются новые способы улучшения качества металла шва посредством регулирования условий массопереноса в сварочной ванне под действием электронного луча оптимизированные режимы сварки большого числа материалов с различными свойствами технология и производство крупногабаритных сварных конструкций с ресурсом соединений на уровне основного материала малогабаритные электронные пушки для сварки  [c.76]


Смотреть страницы где упоминается термин Материал сварных конструкций : [c.358]    [c.107]    [c.282]    [c.266]    [c.88]    [c.66]    [c.29]   
Смотреть главы в:

Прочность сварных соединений  -> Материал сварных конструкций



ПОИСК



Выбор материалов для сварных конструкций

Конструкция сварная — Влияние материала

Материалы сварных конструкций турбин

Сварные конструкции

Технология сварки конструкционных материалов и проиэ водство сварных конструкций Технология сварки сталей и чугуна



© 2025 Mash-xxl.info Реклама на сайте