Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Глава VII. Численные методы

Аналитический метод расчета влияния формы на теплообмен излучением в коническом сопле описан в работо [3881 численный метод разработан в работе [6431. В применении к соплам с многофазным потоком на выходе, эти методы следует изменить в соответствии с материалом предыдущих глав.  [c.335]

Большинство глав книги сопровождается решением примеров и задачами для самостоятельной работы. В учебнике даны краткие сведения о численных методах решения задач (метод конечных разностей, метод конечных элементов).  [c.4]


В данной главе излагается теория упругости, в которой напряжения и деформации связаны линейными соотношениями. Дается общее представление о вариационных принципах и методах, нашедших свое наиболее плодотворное применение при практическом решении инженерных задач кручения и изгиба стержней, пластин и оболочек. В современных инженерных расчетах наиболее распространен численный метод решения задач, называемый методом конечных элементов (МК.Э). Подробное изложение метода и его применение к решению задач теории упругости на ЭВМ дано в работах [3, 8, 17].  [c.112]

Во второй главе изложены методы численного решения уравнений равновесия (нелинейных и линейных). Для решения нелинейных уравнений равновесия рассматривается приближенный метод последовательного нагружения, когда на каждом шаге нагружения решаются линейные уравнения.  [c.61]

Учитывая стремительный прогресс численных методов и ограниченный объем главы учебника, невозможно дать сколько-нибудь полное представление о всем их многообразии.  [c.267]

Можно привести и еще ряд примеров плодотворного использования метода молекулярной динамики для анализа различных подходов к рассмотрению систем многих частиц. Кроме того, этим методом получены фундаментальные результаты о поведении систем твердых дисков и твердых сфер и о фазовых переходах в данных системах, позволившие значительно расширить наши представления о поведении статистических систем. В следующих параграфах этой главы мы рассмотрим в основном результаты, полученные для различных систем численными методами.  [c.198]

Наряду с этим некоторые вопросы изложены в новой редакции и в книгу включена новая глава. Так, дано новое, более общее изложение теории гидравлических сопротивлений, заново написан параграф, посвященный численным методам решения уравнений Навье—Стокса, книга дополнена новой главой Обтекание тел. Кавитация .  [c.3]

Часть задач и вопросов, рассмотренных в этой главе, относится к численным методам исследования сверхзвукового течения газа около конуса как в условиях постоянства теплоемкостей, так и при наличии физико-химических превращений, изменяющих эти теплоемкости.  [c.475]

В последующих главах изложены метод сеток и численный метод характеристик, некоторые современные подходы к решению задач газовой динамики метод установления, методы сквозного счета. Изложены и специальные численные методы метод интегральных соотношений, обратные методы, методы крупных частиц и конечных элементов. В связи с актуальностью проблемы создания пакетов прикладных программ в последней главе приведены примеры таких пакетов для некоторого класса задач газовой динамики. В каждой главе рассмотрено применение численных методов к решению наиболее характерных прикладных задач. Приведены примеры решения прикладных задач, таких, как обтекание потоком газа затупленного тела, течение газа в сопле, задача о взрыве.  [c.4]


Изложение теоретических методов будет продолжено в главе 6. Данную главу можно рассматривать как введение к изучению двух основных экспериментальных методов, которые могут использоваться для подтверждения некоторых особенностей решений для напряжений и деформаций, полученных и исследованных в предыдущих главах. Заметим, однако, что до сих пор рассматривались лишь пластинки простой геометрической формы. Для пластинок более сложного очертания получение аналитических решений становится затруднительным, но эти трудности в большинстве случаев удается преодолеть, если обратиться к численным методам (обсуждаемым в приложении) или к экспериментальным методам, таким, как измерение поверхностных деформаций с помощью тензометров ( 12), фотоупругий метод или метод муара.  [c.162]

Во второй главе описываются численные методы, используемые при организации расчетов на ЭВМ по точным аналитическим решениям, и приемы программной реализации таких расчетов. Рассмотрены методы вычисления интегралов и определения корней трансцендентных уравнений. Эта глава не связана по смыслу с дальнейшим материалом.  [c.4]

В пятой главе рассматриваются методы реализации простейшей модели конвективного теплообмена, заключающейся в решении уравнения энергии при заданном поле скоростей. Обсуждаются особенности конечно-разностной аппроксимации конвективных членов в уравнении энергии. Подробно разбираются численные схемы для двух часто встречающихся на практике задач расчет двумерного стационарного температурного поля жидкости при течении в канале и совместный расчет одномерного температурного поля стенки и жидкости.  [c.5]

Рассматриваемые в главах 3—5 численные методы расчета позволяют решать значительно более широкие классы задач по сравнению с аналитическими методами. Однако тем не менее использование точных аналитических решений при расчетах на ЭВМ температурных полей в ряде случаев весьма полезно. Это вызвано следующими обстоятельствами. Во-первых, эти решения используют в качестве тестовых при анализе различных численных схем. Во-вторых, применение аналитических решений часто позволяет существенно сократить затраты машинного времени и памяти, так как число пространственно-временных точек, в которых находятся значения искомой функции, определяется только объемом требуемой информации об исследуемом процессе. При использовании же численных методов число узлов пространственно-временной сетки, необходимое для получения разностного решения с удовлетворительной точностью, как правило, оказывается существенно большим. Кроме того, реализация многих раз-  [c.50]

В данном разделе сначала коротко рассмотрим основные понятия теории численных методов, а затем более подробно остановимся на применении конечно-разностных схем для решения уравнений теплопроводности. Метод конечных элементов будет изложен в следующей главе.  [c.69]

По описанной схеме рассчитывают и процессы переноса энергии излучением совместно с теплопроводностью и конвекцией. В этом случае при проведении итераций после решения уравнения переноса определяют радиационные тепловые потоки для элементарных ячеек разбиения пространственной области и далее, рассматривая их как заданные объемные источники и стоки энергии, решают уравнение сохранения энергии относительно температурного поля рассмотренными в главах 3—5 численными методами.  [c.203]

Глава 7. ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЕТА НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ В ДЕТАЛЯХ МАШИН  [c.115]

Ниже приведены краткие сведения по двум основным численным методам решения задач упругости, пластичности и ползучести, необходимые для изложения результатов в следующих главах. Дополнительную информацию по этим методам можно найти в работах [15, 24, 51].  [c.119]

При решении задач о номинальной и местной напряженности реакторов ВВЭР обычно приходится использовать комбинации указанных выше методов - сопротивления материалов, теории пластин и оболочек, аналитических и численных методов. Среди последних весьма эффективны вариационные методы - метод конечных элементов (см. 4 настоящей главы) и вариационно-разностный метод.  [c.55]


Численные методы решения, изложенные во второй главе, позволяют сравнительно просто определить нестационарное температурное поле, удельный тепловой поток в геометрически сложных элементах конструкции без ограничивающих задачу упрощений. Однако такие недостатки, как невозможность общего анализа полученного решения, большая вычислительная работа, в ряде случаев затрудняют использование этих методов в инженерной практике, особенно при проектировании тепловых машин и двигателей. Аналитические методы в отличие от численных позволяют производить общий анализ полученного интеграла, получить удобные и простые для инженерных расчетов решения. Поэтому наряду с численными следует широко применять и аналитические методы решения. Среди аналитических методов решения уравнения теплопроводности наибольшее распространение получили метод разделения переменных и операционный метод.  [c.110]

Гл. VII—X посвящены аналоговым методам решения нелинейных задач методу линеаризации, методу нелинейных сопротивлений и методу комбинированных схем. В настоящей главе получают развитие известные аналитические и численные методы, которые используются при решении нелинейных задач.  [c.74]

Глава 7.4. ЧИСЛЕННЫЕ МЕТОДЫ АНАЛИЗА УСТОЙЧИВОСТИ  [c.486]

Глава 9.8. ОСНОВЫ РАСЧЕТА ОБОЛОЧЕК ЧИСЛЕННЫМИ МЕТОДАМИ  [c.168]

В настоящей главе численный метод, примененный Будянским и Радковским [14] для решения упругих задач, распространен на задачи ползучести оболочек. Использован степенной закон ползучести считаются выполненными условия плоского напряженного состояния и гипотезы Кирхгофа — Лява. В качестве числового примера рассматриваются деформации ползучести цилиндрической оболочки, несимметрично нагруженной по торцам моментами показано изменение во времени перемещений и внутренних усилий.  [c.128]

Данное пособие состоит из двух глав и приложения. В первой главе изложены методики, приведены примеры и программы получения с помощью системы аналитических вычислений REDU E, а также численных методов основных уравнений аналитической динамики (уравнений Лагранжа, Гамильтона, Рауса и др.). Рассмотрена задача вывода уравнений Эйлера - Лагранжа с использованием общих теорем динамики, а также уравнений относительного движения в обобщенных координатах.  [c.3]

В пятое издание княги внесены некоторые изменения, относящиеся К главам I, II, VI, VIII и X, посвященным гидравлике, основным уравнениям гидрогазодинамики, теории пограничного слоя, соплам и диффузорам, крылу и решеткам лопаток заново написана мною глава VII (кроме 6) о турбулентных струях, добавлена глава XIV о численных методах расчета газовых течений, составленная В. В. Дугановым ( 2, 4, 5, 6) и В. Д. Захаровым ( 1, 3), и дополнена В. В. Дугановым глава IV ( 7 — 9) некоторыми сведениями по теории сверхзвуковых течений.  [c.8]

Гл. 3. Методу сеток посвящены монографии [10, 24, 26, 30, 32, 39] и отдельные главы книг [7, 17, 27, 28]. Методы решения сеточных уравнений содержатся в [31] 3.5 написан по книге [17]. Изложение материала гл. 3 следует книгам [17, 24] и книге Росляков Г. С., Чудов Л. А. Численные методы в механике сплошных сред. Ч. 2 (М., И )д-во МГУ, 1969).  [c.227]

Основные понятия теории численных методов решения дифференциальных уравнений будут достаточно подробно рассмотрены в главе 3 на примере дифференциального уравнения теплопроводности. Сейчас лишь кратко сформулируем ряд понятий, которые понадо-  [c.27]

В заключении ятой главы отметим,, что в настоящее время при- определении коэффициентов интенсивности напряжений кроме описанных выше математических ке охов широкое распространение получили численные методы и, в частности, метод конечных элементов [ 36-39 J  [c.51]

В СССР уделяется большое внимание и успешно продвигается решение задач о движении машин под действием приложенных сил и производятся исследования других вопросов, связанных с движением машин. Решения таких задач уже имеют существенные результаты. В последние годы большинство авторов включают в общие курсы теории механизмов и машин графические, графочисленные и численные методы исследования движения машин под действием сил, зависящих не только от полвжения, но и от скорости, например в учебниках И. И. Артоболевского 1[21], Г. Г. Баранова 26], Вяч. А. Зиновьева [90] и др. Специальную главу по исследованию движения машин под действием приложенных сил написал В. А. Желиговский [83] для студентов заочного обучения.  [c.13]

Весьма перспективным для изучения трибологаческих процессов является разработка и изучение математических моделей процесса трения, износа и смазки твердых тел (деталей, механизмов и машин) с помощью электронно-вычислительных машин. Для формулировки математических моделей могут быть использованы уравнения, характеризующие процесс течения смазки, контактную и общую деформацию трущихся тел и всего узла трения, тепловые процессы - образование и распространение теплоты, а также явления, связанные с физическими, химическими и механическими фактороми, определяющие в главном процесс поверхностного разрушения деталей при трении. Известно, что широко распространенные методы классической математики часто используют принцип суперпозиции и пригодны в основном для решения линейных задач. Характерная особенность теоретических задач в области трибологии деталей машин заключается в их существенной нелинейности. В качестве примера можно сослаться на систему уравнений, указанных в данной главе. Совместное решение системы нелинейных уравнений представляет значительную математическую трудность, а если учесть также возможность возникновения качественных (и количественных) скачков исследуемых характеристик, например при возникновении процесса заедания при малых и средних скоростях, характеризующихся резким увеличением коэффициента трения скольжения и скорости изнашивания тел, то становятся ясными сложность и необходимость детального исследования адекватных математических моделей с помощью численных методов. В результате получается приближенное решение сложной научно-технической задачи с необходимой точностью.  [c.169]


Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

Эта задача может быть решена по схеме, описанной в п. 2 данной главы. Для других случаев краевых условий необходимо использовать приближенные или численные методы. Г ри решении задачи методом Релея, Ритца, Бубнова—Галеркина и др. в качестве аппроксимирующих могут быть использованы балочные функции (см. гл. X).  [c.229]


Смотреть страницы где упоминается термин Глава VII. Численные методы : [c.4]    [c.138]    [c.12]    [c.236]   
Смотреть главы в:

Расчёт резинотехнических изделий  -> Глава VII. Численные методы



ПОИСК



Me численные (см. Численные методы)

Методы численные

Методы численные (см. Численные методы)



© 2025 Mash-xxl.info Реклама на сайте