Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кромка деформация

Однако изготовление, установка и эксплуатация таких датчиков связана со значительными трудностями, а ошибки в установке инструмента, износ режущей кромки, деформации инструмента не компенсируются имеющимися датчиками обратной связи, что снижает точность обработки.  [c.288]

Эти приборы нашей промышленностью еще не выпускаются, поэтому их проектируют и изготовляют как заводскую технологическую оснастку. По принципу работы приборы могут быть трех типов. В первом типе используется тонкостенный цилиндр, на который снаружи надета манжета, а изнутри находится жидкость или воздух под давлением. Если в месте контакта уплотняющей кромки деформация стенки цилиндра равна нулю, можно опреде-  [c.209]


По сравнению с точением выход стружки при сверлении более стеснен подвод охлаждающе-смазывающей жидкости в зону резания также стеснен. Кроме того, режущие кромки сверла на всем своем протяжении от периферии к центру имеют переменный передний угол изменяется также и скорость резания по длине режущей кромки, что, в свою очередь, сказывается на изменении деформации в смежных элементах по всей длине режущей кромки деформация стружки к центру сверла увеличивается.  [c.163]

В результате деформацией изменяется форма упругих элементов, увеличивается высота детали на размер U , изменяется угол а скоса кромки. Для практического решения задачи целесообразно сложные кривые линии деформируемых упругих элементов детали заменять дугами окружностей, как показано на рис. 163, а (см. размер R). Деформацией участка с п можно пренебречь.  [c.220]

Отбортовка — получение бортов (горловин) путем вдавливания центральной части заготовки с предварительно пробитым отверстием в матрицу (рис. 3.42, а). При отбортовке кольцевые элементы в очаге деформации растягиваются, причем больше всего увеличивается диаметр кольцевого элемента, граничащего с отверстием. Допустимое без разрушения (без образования продольных трещин) увеличение диаметра отверстия при отбортовке составляет d /do = 1,2ч-1,8 в зависимости от механических свойств материала заготовки, а также от ее относительной толщины S/d . Разрушению заготовки способствует наклепанный слой у кромки отверстия, образующийся при пробивке. Большее увеличение диаметра можно получить, если  [c.109]

Процесс резания при сверлении протекает в более сложных условиях, чем при точении. В процессе резания затруднены отвод стружки и подвод охлаждающей жидкости к режущим кромкам инструмента. При отводе стружки происходит трение ее о поверхность канавок сверла н сверла о поверхность отверстия. В результате повышаются деформация стружки и тепловыделение. На увеличение деформации стружки влияет изменение скорости резания вдоль режущей кромки от максимального значения на периферии сверла до нулевого значения у центра.  [c.311]

ДЕФОРМАЦИИ ПОЛОСЫ В ПЛОСКОСТИ ПРИ НАПЛАВКЕ ВАЛИКА НА КРОМКУ ПОЛОСЫ И УГЛОВЫЕ ДЕФОРМАЦИИ  [c.67]

Определить деформации при наплавке валика на кромку полосы на установке с последующей проверкой полученных результатов расчетным путем, а также определить угловые деформации при сварке встык.  [c.70]


Опыт 1. Определить деформации при наплавке валика на кромку полосы заданных размеров. Перед проведением опыта изучить установку для определения деформаций.  [c.70]

Включить двигатель перемещения ленты. Как только лента начнет равномерно перемещаться по экрану, начать наплавку валика на кромку полосы с одновременным включением механизма отсечки времени., Во время сварки отмечать силу тока, напряжение и время горения дуги. После наплавки валика длиной около 100 мм сварку прекратить, тогда начинается естественное охлаждение пробы. В момент, когда оба карандаша будут отмечать параллельные линии на ленте, что свидетельствует о прекращении деформации пластины, выключить установку,  [c.72]

Рис. 29. Кривые деформаций полосы при наплавке валика на кромку Рис. 29. <a href="/info/140396">Кривые деформаций</a> полосы при <a href="/info/698303">наплавке валика</a> на кромку
Режущий инструмент изнашивается по передней и задней поверхностям. Износ по задней поверхности особенно влияет на точность обработки. Размеры деталей изменяются также по причине затупления режущей кромки инструмента, что вызывает увеличение радиальной составляющей силы резания и, значит, увеличение деформаций всей системы СПИД.  [c.49]

При обработке деталей на металлорежущих станках силы резания, зажатия и другие воздействуют на детали станка, обрабатываемую деталь и режущий инструмент, вследствие чего происходит их деформация, изменение величины стыковых зазоров, изменение положения режущей кромки инструмента относительно обрабатываемой детали (отжим) размеры обрабатываемой детали изменяются, появляются отклонения от правильной геометрической формы (конусность, овальность и т. п.).  [c.55]

Каждая заклепка имеет свою зону действия D (рис. 2.3), на которую распространяются деформации сжатия в стыке деталей. Если зоны действия соседних заклепок пересекаются, то соединение будет плотным. Для обеспечения плотности шва иногда выполняют чеканку (пластическое деформирование листов, например, пневматическими молотками) вокруг заклепок и по кромкам листов.  [c.51]

В угловых соединениях (вид б) С отбортованной кромкой, применяемых иногда для присоединения днищ к обечайкам резервуаров, содержащих газы или жидкости под давлением, деформация стенок резервуаров вызывает изгиб заклепок.  [c.199]

Поскольку при переходе от верхней кромки сечения к нижней касательное напряжение изменяется по параболическому закону, деформация сдвига у=т/0 тоже изменяется по этому закону. Поэтому при поперечном изгибе поперечные сечения бруса не остаются плоскими, а искривляются (рис. 2.86).  [c.221]

Следует указать на особенность диаграммы разрушения, рассчитанной по уравнению (28.8). Она состоит в том, что подрастание трещины от начальной длины до критической очень мало. Так, например, при начальной безразмерной длине о=Ю длина трещины вырастает на 14,5%, при —100 — на 0, t% (здесь 5о== о/с, с = л бс/[8(1 — v )ao ]- Столь малый прирост трещины характерен для толстых образцов при незначительной области пластических деформаций у кромки трещины.  [c.240]

Сущность этих подходов состоит в следующем. Пусть имеется идеально упругое тело с начальным разрезом. Для того чтобы этот разрез стал распространяться, увеличивая свою поверхность, требуется израсходовать энергию, равную по величине той, которую надо затратить, чтобы восстановить целостность материала перед кромкой разреза. Эту энергию можно назвать энергией разрушения. Одновременно с образованием новой поверхности, свободной от нагрузок, деформация в некотором объеме тела уменьшается. Это приводит к соответствующему выделению из тела упругой энергии. Таким образом, на основании закона сохранения энергии, в пренебрежении иными возможными потоками энергии, при развитии трещины на величину 65 соблюдается энергетическое условие вида  [c.327]


Покажем возможность использования энергетического критерия равновесия для решения задач теории трещин в идеальном упругопластическом теле [150, 156]. Рассмотрение проведем для случая, когда пластическая деформация сосредоточена в узкой зоне перед кромкой трещины [209, 328, 342]. Пусть толщина  [c.37]

Разность значений действующих напряжений в зоне стружкообразова-ния (см. рис. 31.1, о, ОМ) предопределяют неоднородность процессов деформации. Материал начинает пластически деформироваться на границе зоны ЬО. По мере приближения деформированного объема к режущей кромке деформация и упрочнение металла возрастают и полностью завершаются на границе зоны КМ деформацией сдвига в области максимальных касательных напряжений под углом ф к направлению движения резца. Движение дислокаций в поле напряжений при пластической деформации вызывает последовательный переход атомов в новое положение. В результате атомы приобретают кинетическую энергию и совершают колебания с большей амплитудой около нового положения равновесия. Таким образом, часть работы, затраченной на перемещение дислокаций, превращается в теплоту. В результате при обработке стали 45 температура металла в конце зоны деформации возрастает до 300 °С, не вызьшая его температурного разупрочнения. 566  [c.566]

Стыковые соединения элементов плоских и пространственных заготовок наиболее распространены. Соединения имеют высокую прочность при статических и динамических нагрузках. Их выполняют практически всеми видами термической и многими видами термомеханической сварки. Некоторая сложность применения сварки с повышенной тепловой мощностью (автоматической под флюсом, пла ,менной струей) связана с формированием корня шва. В этом случае для устранения сквоз юго прожога при конструировании соединений необходимо предусматривать съемные и остающиеся подкладки. Другой путь — применение двусторонней сварки, однако при этом необходимы кантовка заготовки и свободны подход К корневой части сварного соединения. При сварке элементов различных толщин кромку более толстого элемента выполняют со скосом для уравнива1П1Я толщин, что обеспечивает одинаковый нагрев кромок н исключает прожоги в более тонком элементе. Кроме того, такая форма соед шения работоспособнее вследствие равномерного распределения деформаций и напряжений.  [c.247]

Главны йугол в плане ф — угол между проекцией главной режущей кромки на основную плоскость и направлением подачи — оказывает значительное влияние на шероховатость обработанной поверхности. С уменьшением угла ф шероховатость обработанной поверхности снижается. Одновременно увеличивается активная рабочая длина главной режущей кромки. Сила и температура резания, приходящиеся на единицу длины кромки, уменьшаются, что сиижает износ инструмента. С уменьшением угла ф возрастает сила резания, направленная перпендикулярно к оси заготовки и вызывающая ее повышенную деформацию. С уменьшением угла ф возможно возникновение вибраций в процессе резания, снижающих качество обработанной поверхности.  [c.260]

Результатом упругой и пластической деформации материала обрабатываемой заготовки является упрочнение (наклеп) поверхностного слоя. При рассмотрении процесса стружкообразова-ния считают инструмент острым. Однако инструмент всегда имеег радиус скругления режущей кромки р (рис. 6.12, а), равный при обычных методах заточки примерно 0,02 мм. Такой инструмент срезает с заготовки стружку при условии, что глубина резания / больше радиуса р. Тогда в стружку переходит часть срезаемого слоя металла, лежащая выше линии D. Слой металла, ( оизмеримын с радиусом () и лежащий между линиями АВ и D упругоиластически деформируется. При работе инструмента значение радиуса р быстро растет вследствие затупления режущей кромки, м расстояние между линиями АВ и D увеличивается.  [c.267]

Рис. 26. Характер деформаций полосы при наплапке валика на кромку Рис. 26. Характер <a href="/info/196152">деформаций полосы</a> при наплапке валика на кромку
Для предотвращения или устранения вредного влияния технологической наследственности заготовительных операций нередко приходится вводить ограничения или дополнительные мероприятия. Так, при холодной правке и гибке металла устанавливают допускаемые значения пластической деформации при механической разделительной резке на ножницах иногда предусматривают удаление металла вблизи кромки реза, где не исключено наличие надры-  [c.44]

Поясним это на том же примере изгиба двухопорной оси с узлами жесткое и в центре опор (рис. 71). С.хема нагружения а вероятна при малых нагрузках или высокой жесткости системы. С увеличением силы (или при уменьшении жесткости узла) система деформируется, как в преувеличенном виде изображено на схеме б (для простоты показана только дефор.мация осп). Деформация действует упрочняюще, вызывая сосредоточение нагрузок на кромках опорных поверхностей.. В результате возникает новая схема действия сил по закону треугольника или (как показано  [c.146]

У валов, вращающихся в несамоуста-навливающихся подшипниках скольжения (рис. 16.7, в), давление по длине подшипников вследствие деформации валов распределяется не симметрично. Условную шарнирную опору следует располагать на расстоянии (0,25...0,3) / от торца подшипника, но не более половины диаметра вала от кромки подшипника со стороны нагруженного пролета. Точный расчет следует производить с учетом совместной работы с подшипниками.  [c.322]


Схватыванию способствуют повыш(-н-ные кромочные давления как следствие начальных и упругих перекосов валов в подшипниках упругое сжатие полых тонкостенных цаг ф валов дефекты трущихся поверхностей (включая заусенцы, острые кромки смазочных канавок, повреждения гговерхностей при скабрении) тем[ ературные деформации валов.  [c.383]

Для определения продольных деформаций и напряжений при наплавке валика на кромку полосы и при сварке узких пластин встык используется графорасчетный метод, разработанный Г. А. Николаевым.  [c.416]

В основе методов упругих решений лежит итерационный процесс уточнения дoпoлниfeльныx условий. С использованием этих принципов разработаны методы решения упругопластических задач для определения деформаций и напряжений при различных случаях сварки [4]. Решение задач этими методами осуществляется в численном виде на ЭВМ. Результаты решения позволяют анализировать как временные напряжения в процессе сварки, так и остаточные после сварки. Разработанные алгоритмы используют для решения одноосных задач (наплавка валика на кромку полосы, сварка встык узких пластин), задач плоского напряженного состояния (сварка встык широких пластин, сварка круговых швов на плоских и сферических элементах, сварка кольцевых швов на тонкостенных цилиндрических оболочках, сварка поясных швов в тавровых и других сварных соединениях), задач плоской деформации (многослойная сварка встык с  [c.418]

В развитии трещины различают три простейших типа смещения ее берегов относительно друг дру1-а в соответствии с действием различных внешних нагрузок (рис. 628). При деформации растяжения (схема I) возникает. трещина отрыва, когда ее поверхности смещаются (расходятся) в направлениях, перпендикулярных к поверхности трещины при деформации поперечного сдвига (схема //) поверхности берегов трещины смещаются поперек ее передней кромки при нагрузке по схеме III образуются треи1ины продольного сдвига, при котором точки поверхности трепгины смещаются вдоль ее передней кромки. Очевидно, если на тело с трещиной действует произвольная нагрузка в области применимости закона Гука, на  [c.728]

В панелях авиационных крыльев сверхпластическая деформация позволяет получить более высокую жесткость за счет того, что удается избежать утонения в кромках (см. точку А на рис. 303). В панелях авиационных грузовых переборок за счет отсутствия макронапряжений удается избежать обратного пружинення листа.  [c.574]


Смотреть страницы где упоминается термин Кромка деформация : [c.42]    [c.318]    [c.56]    [c.397]    [c.11]    [c.259]    [c.69]    [c.57]    [c.247]    [c.270]    [c.432]    [c.22]    [c.260]    [c.116]    [c.38]   
Межслойные эффекты в композитных материалах (1993) -- [ c.312 ]



ПОИСК



Кромка

Лабораторная работа 10. Деформации полосы в плоскости при наплавке валика на кромку полосы и угловые деформации



© 2025 Mash-xxl.info Реклама на сайте