Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связь с реальной структурой

СВЯЗЬ С РЕАЛЬНОЙ СТРУКТУРОЙ  [c.409]

Металл, деформируемый в холодном состоянии, упрочняется. Характер кривых упрочения некоторых металлов показан на рис. 7. В процессе деформирования металла в холодном состоянии возникают остаточные внутренние напряжения, причины возникновения которых связаны с кристаллической структурой металлов. Так как в реальных условиях кристаллы различно ориентированы относительно деформирующей нагрузки, то в материале детали уже в зоне пластического деформирования наряду с пластическими деформациями действуют и упру-464  [c.464]


Сопротивление материалов нельзя рассматривать как дисциплину, которая занимается только теоретическим вычислением напряжений в каком-то однородном упругом теле. Решение задач, изучаемых в сопротивлении материалов, возможно лишь при наличии результатов экспериментального исследования механических свойств реальных материалов в связи с их структурой, методами их изготовления и обработки. Поэтому в настоящем курсе этой стороне отведено достаточное внимание. Работы в лаборатории составляют один из важнейших элементов обучения и должны непременно выполняться студентами параллельно с изучением курса. Описание этих работ, разработанное применительно к существующему оборудованию механических лабораторий, выделено в особое руководство ).  [c.24]

Реальные металлические сплавы, как правило, химически неоднородны (см. далее гл. XI). Неравномерное распределение примесей большей частью связано с дефектами структуры, т. е. со структурной неоднородностью и существенно влияет на механические свойства сплава. Ниже рассмотрены некоторые аспекты этого вопроса, главным образом на примере титановых сплавов.  [c.340]

Книга представляет собой достаточно строгое и в то же время доступное введение в круг проблем, связанных с течением реальных жидкостей. Структура книги подчинена последовательному развитию математического аппарата, лежащего в основе физической теории неньютоновских жидкостей. Сложные понятия тензорного анализа вводятся в рассмотрение в глубокой связи с их физическим содержанием. Изложение общих принципов сопровождается подробным разбором примеров п упражнений.  [c.4]

Для реальных механизмов стремятся разработать такую структурную схему, которая устраняла бы возможность возникновения дополнительных нагрузок в кинематических парах за счет изменения конфигурации контура звеньев независимо от точности изготовления деталей или деформируемости стойки и других звеньев. Механизмы с оптимальной структурой хорошо себя зарекомендовали в эксплуатации. Имеется много примеров, когда устранение избыточных контурных связей обеспечивало высокую надежность, снижение износа деталей, повышение коэффициента полезного действия машины, снижение эксплуатационных расходов [7].  [c.50]

В частном случае замкнутая кинематическая цепь механизма с одной степенью свободы (№ = ) и одним контуром без избыточных связей (д=0) должна иметь такой набор кинематических пар, чтобы сумма их подвижностей была равна семи для пространственного механизма и четырем — для плоского механизма. Последующие присоединяемые группы звеньев, образующие после присоединения замкнутый контур, должны иметь в своем составе набор кинематических пар, сумма подвижностей которого равна шести для пространственного механизма и трем — для плоского механизма. Учитывая, что в реальных механизмах возможны деформации стойки или других звеньев, любой механизм с оптимальной структурой рассматривается как пространственный.  [c.52]


Моделирование реальных физических систем, имеющих сложную структуру, материальной точкой, механической системой и сплошной средой, является результатом упрощения, идеализации и стилизации физического явления и пренебрежением его несущественных свойств. В связи с этим точное математическое исследование моделей является приближенным исследованием физической задачи.  [c.8]

Экспериментально наблюдаемые значения Гх/до для щелочных металлов изменяются от 2 до 6, т. е. значительно отличаются от расчетных. Такое расхождение связано с тем, что ионная модель металла слишком груба, чтобы можно было рассчитывать на хорошее согласие с опытом. Однако представление о структуре металла как об ионном остове, погруженном в электронный газ, компенсирующий силы отталкивания между ионами и связывающий их в кристалл, достаточно точно отражает реальную ситуацию.  [c.84]

Можно указать на несколько факторов, вызывающих появление подобных дефектов. К ним относятся в первую очередь кинетические факторы, связанные с тем, что кристалл не успевает стать идеальным в процессе кристаллизации и последующей обработки. Далее следует указать, что при не слишком низких температурах из-за конкуренции энергетического и энтропийного факторов присутствие в кристалле некоторого количества дефектных мест будет отвечать термодинамическому равновесию. Наконец, уже созданные идеальные кристаллы могут оказаться испорченными под влиянием факторов (механической обработки, действия радиации), нарушающих строгую периодичность расположения атомов. По этим причинам реальные кристаллы имеют дефекты, и физические свойства кристалла формируются под совместным действием строгой периодичности и отступлений от нее. Можно привести немало примеров, свидетельствующих о важности учета вклада дефектов в формирование свойств материалов. Так, без учета этого вклада оказалось невозможным построение теории прочности и пластичности материалов, поскольку эти характеристики определяются степенью сопротивления тела действию сил, смещающих разные части тела относительно друг друга. Под действием радиации (мощные световые потоки, пучки электронов, нейтронов, заряженных ядер и т. д.). отдельные атомы или группы атомов оказываются выбитыми из своих правильных положений, и поэтому структура и свойства облученных материалов необъяснимы без оценки роли дефектов и т. д. В связи с этим важной составной частью физики твердого  [c.228]

В астрофизике утверждается, что в природе имеются объекты, эволюция которых обусловлена макроскопическими ядер-ными процессами. Такими объектами являются звезды. Принципиальная трудность изучения внутренней структуры звезд состоит в том, что процессы, происходящие внутри звезд, недоступны наблюдению. Поэтому излагаемые в этом (и в следующем) параграфе представления о механизме эволюции звезд связаны с данными астрономических наблюдений не прямо, а через довольно длинную цепь теоретических гипотез и расчетов. Несмотря на отмеченную принципиальную трудность, теоретики-астрофизики сумели получить последовательное и детальное описание структуры звезд и их эволюции. Эти теоретические представления не только вполне согласуются с совокупностью данных, накопленных в результате многочисленных и разных наблюдений, но и позволили сделать целый ряд нетривиальных оправдавшихся предсказаний. Поэтому, несмотря на отсутствие прямых наблюдений, можно утверждать, что приводимые в этом и в следующем параграфах сведения (по крайней мере в основном) соответствуют реальным процессам в звездах.  [c.599]

Движение реальной жидкости в лопастной системе связано с образованием пограничного слоя При образовании местных диффузор-ностей, которые возникают при режимах, отличных от расчетного, происходит интенсивное нарастание пограничного слоя, что приводит к изменению структуры потока. В местах возникновения диффузор-ности частицы жидкости, обладая малой скоростной энергией, не могут проникнуть в область повышенных давлений, вследствие чего происходит отрыв потока. Наибольшая опасность отрыва имеет место на тыльной стороне лопасти.  [c.74]

В реальных структурах изломов сигнал с поверхности получается несинусоидальным и сопровождается наложением шумов аппаратуры. В этом случае появляются кратные гармоники. Форма получаемого сигнала связана с профилем поверхности сложной зависимостью с эмпирическими коэффициентами, зависящими от типа прибора и вида разрушенного материала. Поэтому присутствие кратных гармоник лучше определять экспериментально.  [c.208]


Одномерное Ф-преобразование. Использование одномерного преобразования Фурье связано с получением информации при сканировании пучком электронов в направлении локального распространения трещины, совпадающем с измеряемой величиной шага усталостных бороздок. Получаемая информация представляет собой дискретный ряд точек, соответствующих различной интенсивности сигнала. Д.ля получения максимальной точности, ограниченной реальным временем обработки получаемой информации, вычисляют 512 Ф-гармоник (как было показано выше, для больших гармоник увеличивается точность определения размеров периода структуры). Достоверное нахождение до 512 периодов на исходной строке определяет необходимость ввода 1024 точек этой строки. Сигнал с исходной строки запоминается и затем производится его сглаживание и фильтрация импульсных помех. Только после очистки сигнала от помех осуществляется быстрое, дискретное преобразование Фурье с представлением окончательного результата в виде амплитуд гармоник и соответствующих им размеров периода рельефа исходной структуры, которыми применительно к усталостным бороздкам являются величины 5, — шаги продвижения усталостной трещины.  [c.209]

Из рассмотрения реальной геометрии траектории трещины в пространстве, которая отражает многообразие процессов взаимодействия структурных элементов у кончика распространяющейся трещины с пересекающей их зоной пластической деформации, следует, что уменьшать величину Ki на некоторый безразмерный коэффициент, если различия в локальных ориентировках направления роста трещины вдоль ее фронта статистически неизменны в разные моменты времени. В том случае, когда различия ориентировок локальных направлений роста трещины нарастают по ее длине, в качестве множителя следует использовать безразмерную функцию. Корректировка подразумевает уточнение реализуемых затрат энергии на рост трещины в связи с ее более развитой в пространстве геометрией излома, чем в предполагаемом случае формирования идеально плоской поверхности. Определение плотности энергии разрушения (dW/dV)f через уровень одноосного напряжения при растяжении образца при формировании излома с разной высотой скосов от пластической деформации и при различной шероховатости излома в срединных слоях образца также связано с введением поправки на используемую в расчете величину действующего напряжения (см. главу 4). Прежде чем определить структуру указанных поправок, рассмотрим вид управляющих параметров в уравнениях роста усталостных трещин.  [c.235]

Испытания металла пароперегревателей в исходном состоянии в температурных условиях, близких к эксплуатационным, проводятся за относительно короткий срок, в течение которого в структуре образцов не происходит столь существенных изменений, какие наблюдаются в пароперегревательных трубах в реальных условиях эксплуатации. В связи с этим значения  [c.58]

Оба этих замечания свидетельствуют, что величины деформации, рассчитанные с помощью указанных выще уравнений, лишь примерно равны реальным степеням деформации. Более того, формирование наноструктуры при ИПД происходит под действием не только внешних, но и внутренних напряжений (см. 1.2). Вместе с тем, между величиной последних и истинными деформациями нет жесткой связи. Подтверждением этого является формирование обычно однородной структуры по диаметру образцов, подвергнутых ИПД кручением, хотя в соответствии с выражениями (1.1) и (1.2) в центре образцов не должно происходить существенного измельчения микроструктуры. В связи с этим при исследовании процессов эволюции микроструктуры в ходе ИПД кручением часто более правильно рассматривать число оборотов, а не величину деформации, рассчитанную с помощью аналитических выражений. Это положение становится особенно важным при обработке труднодеформируемых или хрупких материалов, где возможно проскальзывание между бойками и образцом или растрескивание последнего. Для их устранения необходимо повышение приложенного давления, но это создает дополнительные технологические трудности в подборе более прочного материала бойков, оптимизации конструкции оснастки.  [c.12]

Таким образом, раскрытие закономерностей любого вида изнашивания при ударе неизбежно связано с необходимостью учета сложных взаимосвязанных процессов, происходящих при ударе упругопластической деформации, высокоскоростного нагрева и охлаждения, фазовых и структурных превращений, упрочнения и разупрочнения, развития усталостных явлений и др. Ударные нагрузки нарастают и снижаются в очень короткий промежуток времени (тысячные доли секунды) и порождают волны напряжений, которые исходят из зоны контакта. При многократных соударениях деталей в процессе эксплуатации современных машин, различных аппаратов и приборов возможно возникновение в одной детали одновременно упругих и пластических волн растяжения и сжатия. По-видимому, сложность явлений, сопровождающих соударение поверхностей, и связанное с этим принятие различных упрощающих предположений, отклонение реальных механических свойств от их абстрактных механических моделей служат причиной несогласованности результатов теоретических и экспериментальных исследований удара. Структура и механические свойства одного и того же металла существенно различаются при динамическом и статическом нагружении [22].  [c.22]

Практическое осуществление сжатия вещества с последующим инициированием термоядерной реакции в центральной части топлива стало реальным после того, как советские ученые предложили использовать сферические мишени с оболочечной структурой. В этом случае не требуется специальное профилирование импульса лазерного излучения, поскольку необходимый режим процессов обеспечивается самой структурой мишени. Такой подход положен в основу всех экспериментальных исследований. К настоящему времени созданы простые оболочечные мишени с удовлетворительными параметрами и ведутся работы по созданию мишеней с более сложной структурой. Основные трудности связаны с обеспечением однородности облучения мишеней достигнутый здесь уровень пока недостаточен.  [c.157]


Из (17.32) сразу же следует, что максимумы диффузного рассеяния будут появляться в точках, где V (k) имеет минимумы. Следовательно, для различных предположений относительно природы функций межатомного взаимодействия и, таким образом, для различных значений V j можно предсказать положения максимумов диффузного рассеяния, а значит, можно вывести тип упорядоченной структуры, которая должна образовываться в сплаве. С этой точки зрения вопрос был изучен Клэппом и Моссом [54], которые обнаружили интересную связь с упорядоченными структурами в реальных системах сплавов. .  [c.383]

В обычных условиях полной криотвллизации не происходит. В связи с этим в реальных полимерах структура обычно двухфазная наряду с. кристаллической фазой имеется и аморфная. Кристалличность придает полимеру повышенную теплостойкость, болыцую жесткость и прочность. Степень кристалличности зависит от материала и метода обработки, причем увеличение скорости охлаждения обуславливает уменьшение вре мели на образование правильного кристаллического порядка.  [c.22]

Трещины с размером, большим 4, неустойчивы и самопроизвольно увеличивают свои размеры, что приводит к образованию макроскопической трещины и разрушению тела. Трещины с размером, меньшим критического, должны стремиться уменьшаться (залечиваться). Однако в реальных твердых телах залечивание трещин практически не наблюдается, что связано с формированием III и IV зон переходного поверхностного слоя при взаимодействии структуры вновь образованной поверхности трещины с элементами соседней макрофазы (см. рис. 75).  [c.127]

Рассмотрим в качестве примера потенциальное бесциркуляционное обтекание круглого цилиндра ( 4 гл. 7). Начиная от передней критической точки /<1, давление убывает dpldx < 0), а скорость возрастает вплоть до точки С, за которой начинается обратное изменение давления и скорости. Жидкие частицы на участках пути вблизи границы Ki испытывают ускорение, обусловленное падением давления в направлении движения, и их кинетическая энергия возрастает. В идеальной жидкости этому ускорению ничто не препятствует, но в реальной движение тормозится трением, развивающимся благодаря прилипанию жидкости к твердой поверхности и образованию пограничного слоя. Все же благодаря прямому перепаду давления ускорение в нем наблюдается, по крайней мере, до точки С. Иначе обстоит дело на участках С/<2. Здесь dpldx > 0 и частицам приходится двигаться против нарастающего давления, В идеальной жидкости это приводит лишь к убыванию кинетической энергии и восстановлению полного давления, достигаемого в точке К2- В реальной жидкости часть кинетической энергии должна быть затрачена еще на компенсацию работы сил трения, оказывающих тормозящее действие. В связи с этим частицы, двигавшиеся в пограничном слое и имевшие малый запас кинетической энергии, начиная с некоторой точки О (рис. 186), не могут уже преодолевать совокупное действие обратного перепада давления и трения они в этом сечении останавливаются, а частицы, двигающиеся по более удаленным от тела траекториям, отклоняются в сторону внешнего потока. Часть жидкости, расположенная ниже точки О, под действием обратного градиента давления получает возвратное движение. Это явление и называют отрывом пограничного слоя. Структура течения и конфигурация линий тока вблизи точки отрыва показаны ка рис. 186.  [c.382]

Рассмотренные до сих нор теории пластичности основывались на гипотезах формального характера реальная структура поли-кристаллического материала и хорошо известная картина пластического деформирования кристаллических зерен при этом совершенно не принимались во внимание. Такой подход имеет свои преимуп] ества и недостатки. С одной стороны, обилие законы пластичности, сформулированные для нроизвольного тела безотносительно к его физической природе, позволяют охватить единообразным способом широкий круг явлений — пластичность металлов, предельное равновесие грунтов, хрупкое разрушение горных пород и бетона и так далее. Такая общность чрезвычайно подкупает действительно, экспериментатор с удивлением обнаруживает, что макроскопическое поведение тел самой разнообразной физической природы оказывается поразительным образом сходным. Оказывается, что это поведение егце более поразительным образом может быть приблизительно хорошо описано при помощи уравнений, полученных из некоторых априорных гипотез достаточно формального характера. Но при более детальном изучении опытных данных оказывается, что при внешнем глобальном сходстве обнаруживаются и различия в поведении разных материалов. Эти различия связаны с тем, что микромеханизмы не только неунругой, но даже упругой деформации не одинаковы. Поэтому естественно стремление к тому, чтобы положить в основу теории пластичности некоторые физические представления о протекании пластической деформации. Нужно признать, что мы еш е далеки от возможности построения макроскопической теории, основанной на анализе и описании процессов, происходящих на микроуровне. Теория скольжения Батдорфа и Будянского, которая будет схематически изложена ниже, отнюдь не может быть названа физической теорией. Однако положенные в ее основу гипотезы в определенной мере отражают процессы, происходящие внутри отдельных кристаллических зерен, хотя и не воспроизводят их точным и полным образом. Пластическая деформация единичного кристалла происходит за счет сдвига в определенной кристаллографической плоскости в определенном нанравлении. Совокупность плоскости скольжения и направления скольжения в этой плоскости называется системой скольжения. Система скольжения задается парой ортогональных еди-  [c.558]

Реальные тела обладают такими механическими свойствами (способность изменять расстояния между точками под действием сил), которые в пределах даже малого объема при переходе от точки к точке изменяются. Более того, если в окрестности ка-кой-либо точки выделить малый объем, то в пределах этого объема можно выделить участки, различные по своим механическим свойствам. Это связано с особенностями микроструктуры тел. Например, в конструкционных материалах можно выделить микрокристаллические об]эазования, которые объединяются между собой по границам этих микрокристаллов, по-разному между собой ориентируясь, в кристаллы. Последние объединяются в зерна со сложной границей. Такая картина вносит в строение материалов различные неоднородности, от которых следует абстрагироваться, что и делается в механике твердого тела введением понятия однородности структуры, которая состоит в том, что в малой окрестности любой точки тела строение однородно и не зависит от размеров малого объема, включающего эту точку. В более детальном описании гипотеза структурной однородности состоит в том, что реальное тело с его сложной микроструктурой, которую определяют расположение атомов н кристаллических решетках, взаимное расположение микрокристаллических образований, объединяющихся в зерна, и т. д., заменяют средой, не имеюш,ей структуры, свойства которой равномерно распределены в пределах любого малого объема. Это эквивалентно тому, что, выделив малый объем тела, его структурные элементы мысленно измельчают до бесконечно малых частиц и потом этой измельченной средой вновь заполняют прежний объем, т. е. в этом однородном теле нет никакой возможности выявить в любом малом объеме какую-либо структуру строения материала. Однако в механике твердого тела рассматривают такие неоднородные по структуре тела, которые состоят из конечного числа конечных объемов, занятых структурно однородными телами. Например, железобетон, в котором бетон и металл порознь считаются однородными, но они занимают конечные объемы. В то же время в механике твердого тела различают однородные и неоднородные тела в том смысле, что механические свойства тел могут быть некоторой функцией коордииат точки (неоднородность механических свойств), хотя в окрестности каждой точки однородность строения сохраняется. Тело будет механически однородным, если его механические свойства не зависят от координат выбора точки тела.  [c.19]


При высокочастотном нагреве часто приходится иметь дело с неоднородными веществами, состоящими из нескольких компонентов с различными диэлектрическими свойствами. Для характеристики таких гетерогенных материалов удобно пользоваться усредненными параметрами, которые должны учитывать реальную структуру материала и свойства его отдельных компонентов. Формулы, дающие связь между средним значением комплексной диэлектри-  [c.153]

Таким образом амплитуда локальных погрешностей немоноэнергетичности различна для разных точек изображения и не находится в однозначной связи с локальными особенностями структуры ЛКО. Максимальное значение эти погрешности имеют в центре протяженных зон объекта (л + = = 0), снижаясь до нуля к краям (х + = д/2), где средняя, величина проекций минимальна. Без наличия достаточно детальной априорной информации о свойствах объекта контроля и используемого излучения не удается выделить в искаженном изображении томограммы (65) полезную информацию о точной структуре и абсолютной величине ЛКО реального контролируемого изделия (54). Такое  [c.419]

Классическим примером в этом отношении может служить теория напряжений и деформаций в идеальном однородном теле, когда в точке тела выделяется бесконечно малый элемент в виде параллелепипеда и рассматривается его напряженное состояние. Связь между деформациями и напряжениями описывает закон Гука. Развитие этого подхода с учетом возникновения пластических деформаций позволяет найти зависимости между напряжениями и деформациями и за пределами упругости [111]. Необходимость учитывать реальные особенности строения материалов привела к созданию таких наук, как металловедение, которая изучает и устанавливает связь между составом, строением и свойствами металлов и сплавов. Для материаловедения как раз характерно рассмотрение явлений, происходящих в пределах данного участка (зерна, участка с типичной структурой), обладающего основными признаками всего материала. Изучение микроструктур сплавов и их формирования явлений, происходящих по границам зерен, термических превращений и других процессов, проводится в первую очередь на уровне, который описывает микрокартину явлений.  [c.60]

Степень приближенности расчета упругих констант трехмерноармирован-ного материала, согласно модели, рассмотренной в 5,2, основана на условном выделении малых объемов материала с однородным полем напряжений. Эти объемы характеризуют реальную структуру материала только при взаимно ортогональном расположении волокон и связаны размерами с интегральными характеристиками материала — объемными коэффициентами армирования р.1,2, з- При этом связь указанных коэффициентов с шаговыми параметрами ссх.г.з через геометрию структуры материала позволяет учесть при расчете характеристик такие параметры, как плотность укладки армирующих волокон вдоль каждой оси координат. В этом основное  [c.138]

Следовательно, можно говорить о целом спектре субструктур, среди которых выделяются две наиболее характерные группы дислока-, ционные ячеистые структуры, образующиеся при температурах деформации ниже 0,4—0,57 пл, и субзеренные — при более высоких температурах (рис. 3.15). Реальная же деформация связана с появлением в. структуре деформируемого металла смеси ячеек и субзерен.  [c.127]

В механике твердой деформируемой среды и при расчете конструкций тела рассматриваются как сплошные с непрерывным распределением вещества. Строго говоря, такой подход не соответствует действительности, так как все реальные тела являются микронеоднородными, что связано с дефектами их структуры, обусловленными по-ликристаллическим строением материала, нарушениями постоянства химического состава, наличием микротрещин и т. д. [11, 100, ПО]. Очевидно, что эти и другие дефекты приводят к локальным возмущениям поля напряжений. Вместе с тем, чем меньше относительные размеры дефектов, тем точнее, в статистическом смысле, методы механики сплошной среды  [c.7]

На рис. 89 приведены результаты моделирования на типовые динамические воздействия. Из результатов моделирования следует, что системы с выключающимися связями обладают определенной чувствительностью к изменению спектрального состава динамических воздействий и к дополнительным переходным режимам, вызываемым выключением связей. Когда спектр динамического воздействия является одноэкстремальной функцией несущей частоты, существует достаточно широкий диапазон частот, в пределах которого указанными явлениями можно пренебречь. Это объясняется тем, что система является грубой по Андронову (структурно устойчивой) к изменению параметров и обладает свойством адаптации (в области динамической устойчивости [3]) к заданному классу динамических воздействий [64]. Если же соответствующий спектр является многоэкстремальной функцией (что особенно часто встречается на практике и, в частности, при обработке реальных акселерограмм сильных землетрясений), то динамические системы данного класса обладают значительно большей чувствительностью к скачкообразному изменению параметров (структуры). Во многих случаях это приводит к существенному сужению области или к потере динамической устойчивости. В этом случае целесообразно проводить исследование динамических систем с переменной структурой, учитывающих оба вида дислокаций (комбинированные СПС) хрупкое разрушение и пластические деформации материала. Излагаемая методика анализа позволяет непосредственно перейти к исследованию подобных систем.  [c.309]

Подход к проблеме управления безопасностью, основанный на системно-динамическом методе, представляет собой, по-видимому, едва ли не единственную возможность, позволяющую корректно сравнивать различные виды опасности друг с другом. Опасности, с которыми сталкивается человек, имеют различный характер, различны по своей направленности, неравномерно распределены в пространстве и во времени. В связи с этим при сравнении опасностей друг с другом встает трудно разрешимая задача выбора шкалы , которая позволяла бы проводить такое сравнение. Как правило, для решения этой задачи принимается предположение, что такая шкала имеет скалярный характер, т. е. единица ее измерения является однокомпонентной, в качестве такой единицы используется единица денежного эквивалента [10, 12]. Однако простейший анализ опасности, связанной с той или иной деятельностью, показывает, что приведенное выше предположение о скалярности шкалы для ее измерения в значительной степени упрощает реальную ситуацию. Этой шкале присуща высокая размерность, и единица ее измерения — вектор. В силу этого при сравнении различных опасностей встает задача о методе свертывания векторов, характеризующих опасность. При этом необходимо принять во внимание, что опасность проявляется лишь в условиях хозяйственной деятельности населения. Эта деятельность представляет собой сложную систему, которая имеет иерархическую структуру с наличием большого числа обратных связей между ее отдельными элементами. Поэтому естественно, что проблема оценки того или иного вида опасности или сравнение различных видов опасности сводится к оценке характера изменения указанной системы в условиях опасности. При этом необходимо учесть не только большое число многоуровневых взаимодействий в системе, но и динамический характер ее развития. Системно-динамический метод фактически и является тем математическим аппаратом, который позволяет проводить сравнение опасностей, характеризующихся разнородными компонентами, т. е. проводить свертку вектора.  [c.93]


Смотреть страницы где упоминается термин Связь с реальной структурой : [c.15]    [c.6]    [c.210]    [c.49]    [c.20]    [c.671]    [c.4]    [c.129]    [c.7]    [c.8]    [c.110]    [c.188]    [c.340]    [c.161]    [c.172]   
Смотреть главы в:

Физико-химическая кристаллография  -> Связь с реальной структурой



ПОИСК



Реальные структуры

Реальный газ

Структура связующего



© 2025 Mash-xxl.info Реклама на сайте