Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Размерная настройка технологических процессов

Размерная настройка технологических процессов  [c.704]

Поворот заготовки (спутника.) при выборе зазоров в противоположные стороны и смещение (плоскопараЛлельное) заготовки (спутника) в плоскости расположения базы в произвольном направлении можно устранить, применив механизм досылки заготовки (спутника) к одной и той же стороне. При этом погрешность базирования для любой точки не превысит половины суммарного зазора и, как систематическая величина, может быть учтена при размерной настройке технологического процесса.  [c.708]


Адаптивное управление износом режущего инструмента. На процесс обработки существенное, а часто и определяющее влияние оказывает правильность эксплуатации режущего инструмента, повышение стойкости которого в большинстве случаев основывается на применении более совершенных твердых сплавов, быстрорежущих сталей, специальных покрытий и т. п. Однако неправильное использование прогрессивных инструментальных материалов при обработке деталей может не дать желаемого эффекта. Это связано не только с изменением качественных характеристик режущей части инструмента, но и с влиянием таких факторов, как колебание припуска и твердости обрабатываемых заготовок, точность деталей, уровень размерной настройки технологической системы и др.  [c.106]

В настоящее время зачастую при расчете режима резания вопрос о непременном получении деталей требуемой точности ставится так, что лишь подразумевается обязательное выполнение этого требования или просто вводятся соответствующие ограничения (порой не всегда обоснованные). Но практика, а также проведенные исследования показывают, что часто критерии эффективности перестают быть выполнимыми или же резко сокращается возможность дальнейшего увеличения эффективности операции, как только вопросы качества становятся на первый план. Кроме того, запись критерия эффективности в подавляющем большинстве случаев делается не совсем строго не учитываются допуски на соответствующие точностные параметры деталей, погрешности, сопровождающие технологический процесс, уровень размерной настройки технологической системы, различного рода ограничения и т. д. Редко рассматривается достаточно длинный промежуток времени, когда на операции имеет место не только процесс формообразования поверхностей деталей, но смена обрабатываемой детали, инструмента, размерная настройка, поднастройка, а для универсальных станков и перенастройка системы СПИД.  [c.397]

Размерный анализ технологического процесса механической обработки проводится в следующем порядке (рис. 1.3.4). Вычерчивается совмещенный эскиз детали и заготовки (в одной или нескольких проекциях), на котором указывают размеры детали А, с допусками, заданными конструктором, и размеры заготовки Bj, подлежащие определению. В соответствии с предварительно разработанным технологическим процессом обработки заготовки на эскиз детали условно наносят припуски Zя, где п - номер поверхности, к которой относится припуск. Все поверхности заготовки и детали нумеруют по порядку, слева направо, и через них проводят вертикальные линии. Между вертикальными линиями указывают технологические размеры получаемые в результате вьшолнения каждого технологического перехода (при этом точка ставится на линии, соответствующей поверхности, которая используется в качестве базовой при установке заготовки или настройки инструмента). Расчет размерных цепей начинают с последней операции, т.е. по размерной схеме снизу вверх. Для размерного анализа важно, чтобы в каждой новой цепи был неизвестен только один размер. При этом замыкающим размером (на рис. 1.3.4 он заключен в квадратные скобки) может быть либо припуск, либо конструкторский размер детали.  [c.94]


Если при статистическом управлении технологического процесса и при статистической подналадке уровня размерной настройки станка контроль выполняется по какому-либо одному размеру изделия (наибольшему, среднему и др.), то границы регулирования следует рассчитывать в таком порядке.  [c.29]

Величины настроечных размеров и допуски на настройку должны быть рассчитаны из условий устойчивости технологического процесса в обеспечении точности обработки. Настройка на размер и смена инструментов должны осуществляться по плану. Несоблюдение установленных требований размерной настройки автоматической линии должно рассматриваться как грубое нарушение технологической дисциплины на производстве, ведущее к расстройству производственного процесса.  [c.93]

Проведенные исследования дали возможность разработать методы и средства оптимизации размерной настройки, поднастройки технологических систем, положенные в основу создания адаптивных систем управления этими важными этапами процесса обработки. При создании адаптивных систем были использованы результаты работ, заключающиеся в следующем.  [c.108]

Проведенные экспериментальные исследования показали, что точность стабилизации размера статической настройки может быть доведена до нескольких микрометров. Кроме того, с высокой точностью стабилизируется центр группирования размеров обрабатываемых деталей, в результате чего точность размеров возрастает в 1,5-2 и более раз. Время, затрачиваемое на размерную настройку и поднастройку, сокращается в несколько десятков раз. Наладчик практически высвобождается из технологического процесса (требуется лишь первоначальная настройка системы), поскольку его функции выполняет система адаптивного управления. Существенно уменьшается трудоемкость изготовления и установки отдельных элементов системы СПИД (например, установка режущего инструмента, программоносителя и др.), так как с помощью САУ, кроме указанных выше, компенсируются и погрешности, возникающие по причине кинематической перенастройки станка. Это приобретает особенно важное значение для  [c.108]

При статистическом регулировании точности обработки на настроенном станке через определенные промежутки времени берут выборки деталей, обработанных последними в данном промежутке. Детали измеряют, а результаты измерений заносят в контрольную карту в виде точек. Если точки располагаются в заранее рассчитанных пределах, то технологический процесс протекает удовлетворительно. В случае выхода размеров за пределы контрольных границ необходимо корректировать размерную настройку. Таким образом, статистическое регулирование точности обработки дает возможность контроля и помогает избежать  [c.514]

Размерный анализ разработки технологического процесса механической обработки проводится в следующем порядке (рис. 106). Вычерчивается совмещенный эскиз детали и заготовки (в одной или нескольких проекциях), на котором указывают размеры детали At с допусками, заданными конструктором, и размеры заготовки Bj, подлежащие определению, В соответствии с предварительно разработанным технологическим процессом обработки заготовки на эскиз детали условно наносят припуски Z , где п - номер поверхности, к которой относится припуск. Все поверхности заготовок и деталей нумеруют по порядку, слева направо, и через них проводят вертикальные линии. Между вертикальными линиями указывают технологические размеры 5, получаемые в результате выполнения каждого технологического перехода (при этом точка ставится на линии, соответствующей поверхности, которая используется в качестве базовой при установке заготовки или настройке инструмента).  [c.871]

Разработка системы размерной настройки (PH) для технологических процессов с большим числом режущих инструментов представляет раздел проектирования, где комплексно решаются технологические, метрологические и экономические задачи. От их решения зависят потери рабочего времени в связи со сменой и регулировкой инструментов, затраты на инструментальную оснастку и потери от брака. На АЛ по обработке корпусных деталей потери времени "по инструменту" составляют до 40 % от всех потерь и 6. .. 10 % от фонда времени работы оборудования. На участках чистового растачивания простои по вине инструмента достигают 12. .. 17% фонда времени.  [c.704]


Приведенный выше расчет рабочих настроечных размеров велся без учета экономики процесса обработки деталей в целом. В действительности же размерная настройка требует времени и подчас значительного, что существенно отражается на себестоимости операции технологического процесса. На рис. 5.4 применительно к токарной (в частности, на токарном гидрокопировальном станке) обработке представлена зависимость трудоемкости размерной настройки от допуска на размерную настройку (Поднастройку) технологической системы.  [c.322]

Таким образом, расчет величины допуска на размерную настройку, поднастройку и перенастройку системы СПИД является задачей на оптимум, которая при прочих равных условиях должна быть подчинена требованию получения заданного количества деталей с возможно минимальной себестоимостью или же возможно максимальной производительностью для данных производственных условий. При этом в качестве исходного должно рассматриваться уравнение себестоимости или производительности операции технологического процесса.  [c.323]

При использовании соответствующих систем управления, автоматизирующих процессы размерной настройки, поднастройки и перенастройки технологических систем, величина допуска б п расширяется за счет существенного сокращения мгновенного поля рассеяния а также компенсации систематических погрешностей, смещающих центр группирования получаемого точностного параметра деталей.  [c.329]

Исследования показали, что нельзя разделять вопросы размерной настройки, поднастройки технологической системы и назначаемого режима обработки, режима обработки и точности деталей, режима обработки и погрешностей, сопровождающих технологический процесс и т. д. Следовательно, задача по оптимизации операции технологического процесса должна решаться комплексно, когда критерии оптимальности охватывают все этапы операции при достаточно длительном времени ее существования.  [c.397]

Если при расчете оказалось, что допуск на получаемый точностной параметр детали, например размер, превышает величину (От для различных технологических систем, то в дальнейшем в рассмотрении будут участвовать все намечаемые варианты операции технологического процесса. Если же о),. > б, данный вариант может быть исключен из дальнейшего рассмотрения или же для его намечаются способы уменьшения сОт- Ими могут быть следующие увеличение жесткости системы СПИД, разбиение заготовок на группы по припуску и твердости с внесением соответствующих поправок в размер статической настройки при обработке последующей группы [3],, использование системы автоматического управления, например, за счет изменения разме ра статической или динамической настроек [36]. Итак, если рассматриваемые варианты операции технологического процесса обеспечивают условие < б, требуется перейти к расчету оптимального допуска на размерную настройку и поднастройку системы СПИД.  [c.403]

Увеличение затрат, связанных с оборудованием и приспособлениями, а также увеличение затрат по заработной плате рабочего и наладчика приводит к увеличению себестоимости обработки деталей. Отсюда вытекает необходимость автоматизации процесса обработки и особенно наиболее трудоемких элементов его, например, размерной настройки, поднастройки и перенастройки технологической системы.  [c.408]

Таким образом, рассчитанный оптимальный режим является тем источником, исходя из которого производятся основные расчеты, затрагивающие технические и организационные стороны технологического процесса. Успешное решение задачи по выбору оптимального режима обработки деталей имеет место в том случае, когда с достаточной точностью определены и учтены погрешности, сопровождающие технологический процесс, в пределах установленного допуска проведена размерная настройка и поднастройка. В действительности же, при обычной обработке (без использования каких-либо регулирующих систем), как правило, не известны ни размер динамической настройки, ни его колебание, ни характер смещения центра группирования точностных параметров деталей вследствие действия систематических факторов, а также различного рода случайных возмущений.  [c.412]

Использование указанных систем управления позволяет не только точно определять соответствующие параметры процесса, но и в значительной степени сократить их. В частности, использование САУ точностью обработки приводит к сокращению поля рассеяния сОт, порождаемого в основном случайно действующими факторами, и, как следствие этого,— повышению эффективности обработки за счет расширения допуска на размерную настройку и поднастройку системы СПИД. Использование САУ уровнем размерной настройки позволяет стабилизировать во времени центр группирования получаемых точностных параметров деталей, а следовательно, повысить точность обработки, сократить трудоемкость настройки, поднастройки, практически отказаться от услуг наладчика технологического процесса.  [c.413]

Таким образом, изложенная выше методика дает возможность назначить оптимальный режим обработки деталей для каждых конкретных производственных условий с учетом точности обработки, погрешностей, сопровождающих технологический процесс, оптимального допуска на размерную настройку и поднастройку и различного рода затрат. В дополнение к этому введение систем автоматического управления операцией технологического процесса способствует существенному увеличению его эффективности.  [c.413]

Оптимизация операции технологического процесса предполагает и оптимизацию процесса размерной настройки, поднастройки, а для универсальных технологических систем и перенастройки системы СПИД. В этой связи должны быть использованы САУ указанными этапами операции. Нетрудно показать, что при решении задачи оптимизации операции путем одновременного применения САУ точностью, скоростью износа инструмента, размерной настройкой, поднастройкой и другими в распоряжении проектанта имеется довольно ограниченный круг регулирующих параметров. В этой связи для конкретных технологических систем существуют оптимальные варианты многомерных систем управления, применение которых способствует наибольшей эффективности процесса.  [c.415]


Во время выполнения различных технологических процессов — получения заготовок, обработки деталей, сборки сборочных единиц и машин в целом — одновременно действуют все или часть рассмотренных выше факторов. Таким образом, качество продукции является результатом совместного действия большого количества факторов, удельное влияние которых различно. Например, при черновой механической обработке на токарных станках деталей с большими припусками на обработку и на высоких режимах действуют значительные силы, создаются высокие температуры и, следовательно, порождаемые этими условиями погрешности будут иметь большое удельное значение в балансе общей погрешности обработки изделия. Естественно, что удельное значение погрешностей, порождаемых статической настройкой размерных цепей системы СПИД и установкой деталей, в этих условиях будет относительно мало.  [c.241]

После некоторого периода работы машины (il) должна следовать ее остановка на время для размерной подналадки механизмов и инструмента, цель которой — изменить уровень настройки, вернуть мгновенное поле рассеивания размеров в пределы поля допуска, ближе к его противоположной границе. Затем снова следует период бесподналадочной работы машины, в течение которого могут быть простои других видов, например, несрабатывание различных механизмов и устройств — отказы элементов. В конце концов снова наступает момент, когда размеры деталей приближаются или переходят границу поля допуска — наступают отказы параметра, что вызывает через отрезок времени новую остановку машин длительностью 02 для подналадки. При этом как периоды бесподналадочной работы t , так и длительность единичных простоев 0 являются случайными величинами, которые характеризуют надежность и стабильность протекания технологического процесса — технологическую надежность. Практически, при наличии постоянного ручного или автоматического 76  [c.76]

Во многих случаях общей оценки точности по коэффициенту готовности оказывается недостаточно. Анализ большого количества фактических диаграмм точности показывает, что в подавляющем большинстве случаев разброс размеров всегда укладывается в поле допуска за незначительными исключениями (не более 2—3% брака). Это объясняется тем, что ход технологического процесса автоматической линии всегда контролируется либо автоматическими контрольными приборами, либо вручную — с помощью регулярных или выборочных измерений. И всякий раз, когда смещение уровня настройки обнаруживает тенденцию массового выхода размеров обрабатываемых деталей за границу поля допуска, станок или линия останавливается, и следует размерная подналадка механизмов или инструмента или смена инструмента. Таким образом, нахождение кривой распределения почти целиком внутри поля допуска свидетельствует лишь о том, что поле допуска больше, чем поле мгновенного рассеивания. Иными словами, диаграмма точности не дает ответа на вопрос, какова стабильность и надежность технологического процесса и как удается обеспечивать на данном станке или линии заданную точность обработки.  [c.115]

При расчете технологического процесса на точность учитываются следующие технологические факторы систематические переменные — размерный износ и тепловые деформации режущего инструмента, систематическое изменение во времени сил резания, обусловленных затуплением режущего инструмента случайные — рассеивание черновых размеров заготовок в пределах допуска, колебание механических свойств заготовок, рассеивание положения шпинделя в подшипнике передней опоры вследствие наличия зазоров, рассеивание, обусловленное изменением сил резания и жесткости технологической системы, рассеивание средних значений диаметров прутков (заготовок), неоднородность физико-механических свойств различных экземпляров режущего инструмента одной марки, рассеивание погрешностей настройки и др.  [c.59]

Технологические и измерительные размерные цепи образуются при осуществлении технологических процессов обработки и измерения деталей для решения задач по обеспечению требуемого положения деталей в процессе обработки относительно режущих инструментов или в процессе измерения относительно измерительных средств, при настройке оборудования, расчетах технологических размеров, перемене баз, расчетах межоперационных размеров и т.д.  [c.86]

Формирование размерных связей между указанными системами координат осуществляется на двух этапах, технологической подготовки процесса и настройки станка. На этапе технологической подготовки, кроме решения общих вопросов, связанных с разработкой процесса, проводят выбор системы координат детали и пересчет размеров, выбор исходной точки (нуль обработки) и составление управляющей программы.  [c.226]

Первая часть содержит работы по основам технологии машиностроения (работы 1—20), в процессе выполнения которых, кроме усвоения курса, будущие инженеры приобретают также некоторые навыки и знакомятся с методическими правилами, необходимыми для проведения научно-исследовательских работ в области технологии машиностроения и обработки результатов экспериментов. Работы 21—30 относятся ко второй части курса технологии машиностроения и дают возможность студентам получить дополнительные практические навыки по настройке станков для выполнения отдельных технологических операций. В этом разделе предусмотрено также проведение размерных расчетов, часто встречающихся в технологической практике.  [c.4]

Для статистического регулирования технологических процессов обычно используются следующие характеристики в выборке среднее арифметическое значение размеров х , медиана размах размеров значения крайних членов (индивидуальных значений) X., среднее квадратическое отклонение Выборочные значения и позволяют следить за смещением уровня размерной настройки процесса, а R , и ж. — за рассеиванием размеров изделий относительно центра группирования. Обычно используются пары выборочных статистических характеристик процессов в таких сочетаниях среднее арифметическое значение и размех или среднее квадратическое отклонение S , медиана и значения крайних членов x .  [c.23]

Методы расчета границ регулирования технологических процессов рассматриваются здесь применительно к двум основньш задачам статистическому управлению точностью дискретных технологических процессов и подналадке уровня размерной настройки станков.  [c.21]

Предложена методика оптимизации границ регулирования технологических процессов при статистическом управлении точностью и при подпаладке уровня размерной настройки станков. Методы оптимизации основаны на вероятностном моделировании на ЭВМ процессов управления точностью массовых производств. Границы регулирования процессов моделируются с учетом корреляционной связи текущих размеров обрабатываемых изделий и погрешностей их формы. Табл. 2, ил. 1, библ. 3 назв.  [c.162]


Анализ обработки корпусных деталей, наиболее трудс -мкнх по характеру выполнения технологического процесса, показал, что на сверление отверстий и нарезание резьб затрачивается 70 % времени обработки, на фрезерование — 20 % и на растачивание—10%. Поэтому одним из важнейших путей повышения производительности обработки на станках сверлнльно-расточной группы является сокращение времени установки заготовки в рабочую позицию, смены и крепления инструмента, введение комплексной обработки различными инструментами. Это может быть достигнуто применением устройств предварительного набора координат, систем знаковой индикации, ЧПУ, предварительной размерной настройки инструмента вне станка, автоматической сменой инструмента, расширением возможностей станков за счет изменения конструкции станков с револьверными инструментальными головками или инструментальными магазинами с быстрой заменой инструмента. Произво-  [c.186]

Выше указывалось, что с помощью теории размерных цепей решаются различные задачи, возникающие при проектировании изделий, расчете размеров, координат средин полей допусков, величин допусков, правильной простановке размеров при разработке технологических процессов изготовления изделий, расчета и выбора технологических и измерительных баз, расчета межпереходных размеров и припусков, расчете и проектировании технологической оснастки, разработке технологии сборки, настройке технологических систем СПИД на требуемую точность обработки и т. д., при разработке методов измерения и выборе средств измерения и при решении ряда задач, возникаюш,их при эксплуатации изделий.  [c.263]

Станки металлорежущие — Выбор для обработки деталей 51 — см. так же Методика определения экономической эффек-тиености применения станков с ЧПУ,< Нормирование работ на станках. Приспособления и устройства для размерной настройки инструментов. Программирование станков. Разработка технологических процессов и управляющих программ,-Режимы резания. Системы программного управления станками, Технические ха-  [c.287]

Если к решению задачи размерной настройки, поднастройки и перенастройки технологической системы подойти более строго, то, кроме сказанного, на величину Лр должны быть наложены дополнительные, причем весьма существенные ограничения, конкретизирующие выбор или расчет Лр. Например, рассматривая схему (рис. 5.1, а) применительно к обработке вала, можно констатировать следующее. Если величина допуска характеризует точность заданного межпереходного (межоперационного) размера, то Лр следует выбирать ближе к нижней предельной границе, тем самым оставляя меньшую часть припуска для съема на последующих операциях (переходах), что повышает производительность технологического процесса в целом. Если же характеризует окончательную точность размера, необходимо размерную настройку производить таким образом, чтобы величина Лр размещалась как можно ближе к верхней предельной границе, в частности, необходимо оставить сравнительно большую часть производственного допуска на износ детали в машине, что благоприятно скажется на стабильности качества, долговечности машины и тем самым в большей степени удовлетворит запросы потребителей.  [c.321]

Точность получаемых на детали размеров зависит от величины погрешностей, вносимых на каждом из трех этапов настройки системы СПИД. На универсальных металлорежущих станках функции управления и контроля технологического процесса выполняет рабочий. Он устанавливает и фиксирует на станке деталь, устанавливает в требуемое относительное положение рабочие органы станка, задает им необходимую скорость относительных перемещений. В процессе обработки рабочий осуществляет постоянный контроль за ходом технологического процесса, получая при этом дополнительную информацию. Он измеряет получаемые точностные показатели детали, сравнивает их с техническими требованиями и, в случае необходимости, производит соответствующую размерную поднастройку, переключение режимов резания или замену режущего инструмента. Таким образом, если при настройке универсальных станков точность выполнения каждого этапа контролирует рабочий, то в процессе автоматической перенастройки программных станков контроль отсутствует, так как цикл перенастройки и обработки происходит без непосредственного участия человека. Точность выполнения, каждого из трех этапов настройки зависит от большого количества различных факторов. Учесть аналитическим путем количество факторов, определяющих точность при автоматической перенастройке, не представляется возможным. Поэтому ставится задача создания самоподнастраивающихся станков-автоматов способных система-тически следить за точностью технологического процесса и при необходимости автоматически производить соответствующую поднастройку.  [c.336]

Экономическая эффективность использования САУ автоматической перенастройкой по точностным параметрам. Проведенные экспериментальные исследования автоматической размерной пере- астройки гидрокопировальных токарных и фрезерных станков с использованием разработанных систем автоматического управления показали достаточно высокую эффективность предлагаемого способа. Так, при обработке различных типоразмеров деталей типа валов на гидрокопировальных полуавтоматах 1722 точность стабилизации размера динамической настройки не превышает 0,005—0,008 мм, а точность стабилизации размера статической настройки составляет 0,004—0,005 мм. Это позволило производить обработку деталей различных типоразмеров за один проход с точностью 0-,04—0,05 мм в партии при колебании припуска от 1 до 4 мм. При обычной обработке (без использования САУ) точность обработки ниже в 3—5 раз. Точность перенастройки системы СПИД с обработки одного типоразмера детали на другой, оцениваемая средними величинами размеров деталей, составляет 0,006 мм. Значительно сокращается время на настройку и перенастройку системы СПИД. Так, при обычной обработке переход на новый типоразмер детали требует 20—30 мин, причем основная доля этого времени уходит на размерную настройку методом пробных проходов с использованием 2—3 пробных деталей. При использовании САУ время на перенастройку не превышает 5 мин, причем основная его часть затрачивается на смену программоносителя, режущего инструмента, а размерная настройка составляет несколько секунд. При этом не требуется производить пробных проходов, использовать пробные детали. Оптимальная партия деталей практически может состоять из одной детали. Наладчик исключается из технологического процесса, его функции выполняют САУ. При автоматизации смены программоносителя и режущего инструмента общее время на перенастройку гидрокопировальных полуавтоматов не превышает 1 мин.  [c.624]

Наиболее полно используются технологические возможности системы СПИД с учетом могущих иметь место ограничениях. Существенно расширяется допуск на размерную настройку и поднастройку системы и уровень настройки поддер1й<ивается постоянным на протяжении обработки всей партии. Наладчик практически высвобождается из технологического процесса (нужна лишь первоначальная настройка САУ), в том числе и на этапах перехода с обработки одного типоразмера детали на другой. Представляется возможным объективно определять момент замены режущего инструмента по изменению производительности процесса.  [c.632]

Погрешности, вызываемые износом инструмента, тепловыми и силовыми деформациями технологической системы, весьма трудно компенсировать методом предварительной настройки станка, например, путем задания законов их изменення в качестве исходных данных для работы систем программного управления. Невозможность запрограммирования указанных погрешностей вызывается тем, что они носят характер случайных размерных функций (случайных процессов). В этом, в частности, заключается основная трудность использования для управления точными технологическими операциями вычислительных машин. Отсюда вытекает необходимость в разработке таких методов получения размеров, которые бы позволяли автоматически компенсировать влияние указанных факторов. Эти задачи решаются с помощью средств активного контроля. При активном контроле размерные цепи большой протяженности, включающие в себя элементы самого станка, заменяются более короткими размерными цепями змерительных устройств.  [c.4]

Профилактический контроль состоит из проверки средств производства (станка, инструмента, приспособления и заготовки) до выполнения технологической операции для определения пригодности их к использованию в производстве в целях обеспечения нормального течения производственного процесса. Профилактический контроль при производстве зубчатых колес состоит из контроля геометрической и кинематической точгюсти зуборезного станка, точности зуборезного инструмента как нового, так и после каждой заточки, точности базирующих приспособлений, наладки и настройки станка, заготовки по размерным параметрам и по твердости материала.  [c.444]


А — зона рассеивания размеров обработки и Л — зона рассеивания погрешностей настройки), от наименьшего предельного значения Хтт рассматриваемого геометрического параметра показана точка [Х ] заданного размера настройки. Для простоты зоны рассеивания можно складывать по методу максимума и минимума. В ряде случаев более оправдано применение квадратичного сложения зон рассеивания по теоретико-вероятностному методу расчета технологических размерных цепей. Центр рассеивания величины Хтах располагается выше точки [Х ]на величину Оф среднего значения погрешности формы, вызываемой начальной неточностью станка Вызываемое быстро протекающими процессами рас-  [c.389]


Смотреть страницы где упоминается термин Размерная настройка технологических процессов : [c.28]   
Смотреть главы в:

Справочник технолога-машиностроителя Т2  -> Размерная настройка технологических процессов



ПОИСК



532, 533, 534 — Настройк

Настройка

Настройка размерная

Размерности

Ряд размерный



© 2025 Mash-xxl.info Реклама на сайте