Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения динамики материальной точки

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.11]

Основные формы дифференциальных уравнений динамики материальной точки  [c.11]

ОСНОВНЫЕ ФОРМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.12]

Каковы две основные задачи динамики точки, которые решаются при помощи дифференциальных уравнений движения материальной точки  [c.26]

С помощью дифференциальных уравнений движения материальной точки можно решать две основные задачи динамики прямую и обратную.  [c.13]


Используя дифференциальные уравнения движения материальной точки в той или другой системе координат, можно решать две основные [задачи динамики точки.  [c.211]

Используя основной закон динамики, можно вывести дифференциальные уравнения движения материальной точки в различных системах координат. По аксиоме о связях и силах реакций свя зей можно получить дифференциальные уравнения движения и несвободной точки так же, как и для свободной, только ко всем приложенным к точке силам надо добавить силы реакций связей  [c.228]

Во многих задачах динамики рассматривается движение материальной точки относительно системы отсчета, движущейся относительно инерциальной системы. Дифференциальные уравнения движения материальной точки относительно таких подвижных, в общем случае неинерциальных, систем отсчета получают из уравнений движения точки относительно инерциальной системы отсчета и кинематической теоремы Кориолиса о сложении ускорений.  [c.249]

Второй закон Ньютона положен в основу составления систем дифференциальных уравнений движения материальной точки. В связи с этим второй закон Ньютона иногда называют основным законом динамики.  [c.318]

После краткого рассмотрения систем дифференциальных уравнений движения материальной точки в различных формах остановимся на изучении двух основных задач динамики точки.  [c.321]

Некоторые простейшие применения дифференциальных уравнений движения материальной точки. Методические указания к решению задач динамики  [c.323]

Запишите дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси сравните его с основными уравнениями динамики материальной точки.  [c.208]

Период развития механики после Ньютона в значительной мере связан с именем Л. Эйлера (1707— 1783), отдавшего большую часть своей исключительно плодотворной деятельности Петербургской Академии наук, членом которой он стал в 1727 г. Эйлер развил динамику точки (им была дана естественная форма дифференциальных уравнений движения материальной точки) и заложил основы динамики твердого тела, имеющего одну неподвижную точку ( динамические уравнения Эйлера ), нашел решения этих уравнений при движении тела по инерции. Он же является основателем гидродинамики (дифференциальные уравнения движения идеальной жидкости), теории корабля и теории упругой устойчивости стержней. Эйлер получил ряд важных результатов и в кинематике (достаточно вспомнить углы и кинематические уравнения Эйлера, теорему о распределении скоростей в твердом теле). Ему принадлежит заслуга создания первого курса механики в аналитическом изложении.  [c.11]


Несравненно труднее получить решение основной задачи динамики, сводящейся к более трудной математической операции интегрирования системы дифференциальных уравнений (4.1). Для выяснения ряда принципиальных вопросов, связанных с решением основной задачи динамики, рассмотрим простейшую задачу о свободном движении материальной точки в однородном поле притяжения Земли без учета сопротивления атмосферы. Если систему декартовых координат выбрать так, как указано на рисунке 4.1, то дифференциальные уравнения движения материальной точки можно записать в виде  [c.43]

Изложенный в предыдущей главе прием решения задач динамики в особенности удобно применяется в тех случаях, когда движение материальной точки задано и требуется определить силу или силы, под действием которых это движение происходит. К этой категории вопросов относились примеры, изложенные в предыдущем параграфе. Не менее важна обратная задача зная силы, действующие на материальную точку, определить ее движение. Общий прием для решения этой задачи состоит в интегрировании дифференциальных уравнений движения материальной точки.  [c.25]

Если движение неинерциальной системы в некоторой инерциальной известно, то дифференциальные уравнения движения материальной точки в ней (8.6) составить легко. Обе силы инерции определяются по формулам (8.4) и (8.5). На практике отнесение движения к неинерциальной системе в ряде случаев позволяет значительно упростить решение второй задачи динамики.  [c.101]

Дифференциальное уравнение в векторной форме, естественно, эквивалентно трем скалярным уравнениям. В зависимости от выбора осей координат, на которые проектируется основное уравнение динамики (1.1), можио получить различные формы скалярных дифференциальных уравнений движения материальной точки.  [c.244]

Наиболее общим приемом решения задач динамики материальной точки является применение дифференциальных уравнений движения точки в проекциях на орты различных систем координат.  [c.537]

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ОСНОВНЫЕ ЗАДАЧИ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.208]

Вместе с тем появились и существенные дополнения, среди которых следует отметить написанную К. А. Лурье новую (тридцать первую) главу, содержащую изложение основ специальной теории относительности. В заново написанных параграфах получили освещение вопросы полета ракеты простейшей схемы, теории колебаний систем с произвольным конечным числом степеней свободы, применения общих теорем динамики систем материальных точек к сплошным средам (теоремы Эйлера, Бернулли, Борда), а также к выводу общих дифференциальных уравнений динамики сплошных сред и выражения мощности внутренних сил в сплошной среде. Последнее в случае сред с внутренним трением позволяет глубже судить о важном для механики понятии потерь (диссипации) механической энергии при движении среды.  [c.7]

Для вывода этой теоремы сначала в случае одной материальной точки умножим обе части основного дифференциального уравнения динамики точки  [c.212]

Форма, которую Лагранж придал дифференциальным уравнениям динамики, до сего времени служила только для того, чтобы с изяществом выполнять различные преобразования, для которых пригодны эти уравнения, и для того, чтобы с легкостью и притом во всей их широте выводить общие законы механики. Однако из этой же формы можно извлечь важную выгоду с точки зрения самого интегрирования этих уравнений, что, как мне кажется, добавляет новую ветвь к аналитической механике. Я наметил ее основные черты в сообщении, сделанном 29 истекшего ноября Берлинской академии, после того, как имел честь представить Вашей прославленной академии, приблизительно год назад, пример, способный дать почувствовать дух и полезность нового метода. Я нашел, что всякий раз, когда имеет место принцип наименьшего действия, можно следовать по такому пути в интегрировании дифференциальных уравнений движения, что каждый из интегралов, найденных последовательно, понижает порядок этих уравнений на две единицы, если отождествлять постоянно порядок системы обыкновенных дифференциальных уравнений с числом произвольных постоянных, которое вводит их полное интегрирование. Высказанное предложение имеет место также и в случаях, когда функция, производные которой дают составляющие сил, действующих на различные материальные точки, содержит явно время. Мы находим, например, в случае одной точки, вынужденной оставаться на заданной поверхности и подверженной действию только центральных сил, что дифференциальное уравнение второго порядка, которым определяется это движение, приводится к квадратурам, как только найден один-единственный интеграл. Наикратчайшие линии на поверхности входят в этот случай.  [c.289]


По поводу различных задач, относящихся к движению системы материальных точек и рассмотренных до сего времени, можно сделать одно важное и интересное замечание Во всех случаях, когда силы являются функциями только координат движущихся точек и когда задачу удалось свести к интегрированию дифференциального уравнения первого порядка с двумя переменными, оказывается также возможным свести эту задачу к квадратурам. Мне удалось превратить это замечание в общее положение, которое, как мне кажется, дает новый принцип механики. Этот принцип, так же как и другие общие принципы механики, дает возможность получить интеграл, но с той разницей, что другие принципы дают только первые интегралы дифференциальных уравнений динамики, тогда как новый принцип приводит к последнему интегралу. Этот принцип обладает общностью, более высокой, нежели другие принципы, потому что он применим к случаям, когда аналитические выражения сил, а также уравнения, выражающие структуру системы, содержат координаты движущихся точек в любой форме. С другой стороны, принципы сохранения живых сил, сохранения площадей и сохранения центра тяжести во многих отнощениях имеют преимущество перед новым принципом. Прежде всего, эти принципы дают конечное уравнение между координатами движущихся точек и составляющими их скоростей, тогда как интеграл, получаемый на основании нового принципа, требует еще квадратур. Во-вторых, применение нового принципа предполагает, что уже найдены все интегралы, кроме одного, предположение, которое осуществляется лишь в очень небольшом количестве задач. Но это обстоятельство не может уменьшить- ценности нового принципа, в чем, я надеюсь, убедит применение его к нескольким примерам.  [c.294]

Данное уравнение называют уравнением движения вершины трещины по той простой причине, что оно является обыкновенным дифференциальным уравнением по времени для координаты вершины трещины a(t) и напоминает по виду уравнение движения материальной точки в элементарной динамике. Уравнение (3.1) допускает точное решение лишь в некоторых простейших случаях некоторые следствия из этого уравнения будут рассмотрены в следующем параграфе. В данном параграфе акцент сделан на проблеме динамической вязкости разрушения. Особое внимание уделяется, в частности, предсказанию зависимости динамической вязкости разрушения от скорости движения вершины трещины путем исследования напряженно-деформированного состояния на расстояниях, намного меньших тех характерных размеров, на которых преобладающую роль играют поля, определяемые коэффициентом интенсивности напряжений. Не говоря уже о том, что решение данного вопроса интересно само по себе, оно очень важно и для исследования задач об остановке трещины и выявления связи микроструктуры материала с сопротивлением динамическому росту трещины.  [c.98]

Уравнения Лагранжа в обобщенных координатах применяют для решения задач динамики материальной точки с тремя степенями свободы в тех случаях, когда непосредственное составление дифференциальных уравнений движения затруднительно, например при применении сферических координат.  [c.544]

Эти уравнения, являющиеся в динамике точки основными, называются дифференциальными уравнениями движения материальной  [c.385]

Составлением дифференциальных уравнений движения не заканчивается, а только начинается исследование движения материальной точки. В конечном счете необходимо определить, как будет двигаться она при заданных начальных условиях, а в ряде задач еще потребуется знать, и как изменяется это движение при непрерывном изменении начальных условий. Нужно уметь определять траекторию точки и характер ее движения по этой траектории. Чтобы все это знать, необходимо уметь интегрировать уравнения движения материальной точки. Общие теоремы динамики и их первые интегралы представляют собой некоторые стандартные методы исследования ее движения. В целом ряде случаев эти стандартные методы значительно  [c.43]

Эта тема, обычно рассматриваемая как иллюстрация решения второй основной задачи динамики свободной материальной точки, здесь читается в конце курса из тех соображений, что к этому времени студенты уже знакомы с теорией интегрирования дифференциальных уравнений, описывающих колебания точки с одной степенью свободы.  [c.71]

Для получения дифференциальных уравнений несвободного движения точки, особенно в тех случаях, когда внешние силы и силы реакций связей обусловлены взаимодействием точки с несколькими материальными телами, можно исходить из одного общего принципа динамики, открытого Даламбером.  [c.303]

В этой главе будет рассмотрен ряд основных положений динамики, дающих возможность находить первые интегралы дифференциальных уравнений двилгения материальной точки. Эти положения динамики будем называть теоремами, так как они являются непосредственными следствиями из основных законов и аксиом механики. Заметим, что иногда эти теоремы называют также законами, но, конечно, при этом их надо четко отличать от основных законов механики — законов Ньютона. Основные теоремы динамики — это выводы в первую очередь из второго закона Ньютона, который поэтому называется основным законом механики.  [c.359]

Приобретя широкую известность, трактат Даламбера тем не менее не смог сыграть роли систематической сводки аппарата аналитической динамики материальных систем, ибо оказался лишь малоупорндоченным набором примеров на приложение принципа равновесия потерянных сил, не содержащим никаких методически стройных и единообразных приемов составления дифференциальных уравнений движения материальных систе.м. Главной причиной этого было то, что Даламбер не уделил внимания аналитическому оформлению того принципа статики системы, сочетание которого с принципом Даламбера только и дает возможность завершить составление упомянутых уравнений. Первым систематическим трактатом по аналитической механике систем материальных точек, подчиненных механическим связям, явился лишь трактат Лагранжа Аналитическая механика , вышедший первым изданием в 1788 году. Он сыграл основополагающую роль для дальнейшего развития той разновидности аналитической механики, которая опирается на комбинацию принципа виртуальных перемещений с црин-ципом Даламбера или с петербургским принц1гпом динамики системы.  [c.2]


В случае произвольной системы материальных точек простота предыдущей теоремы нисколько не нарушается при условии, что дифференциальным уравнениям динамики дадут ту замечательную форму, в которой их впервые представил Гамильтон и которую отныне следует предпочесть во всех общих исследованиях, относящихя к аналитической механике. Правда, формулы Гамильтона относятся исключительно к случаям, когда составляющие сил являются частными производными одной и той же функции координат однако было нетрудно внести изменения, необходимые для того, чтобы сделать эти формулы применимыми в общем случае, когда силы выражаются любыми функциями координат.  [c.296]

Наиболее общим приемом составления дифференциальных уравнений движения материальной системы, подчиненной голономным связям, является применение уравнений Лагранжа. При наличии идеальных связей в эти уравнения не входят реакции связей. Если на материальную систему наложены голономные связи, то число уравнений Лагранжа равно числу степеней свободы. Применение этих уравнений особенно целесообразно при рассмотрении систем с несколькими степенями свободы. Так, в случае системы с двумя степенями свободы надо составить два дифференциальных уравнения движения. Если решать задачу, минуя уравнения Лагранжа, то необходимо из многих общих теорем и иных уравнений динамики найти два уравнения, применение которых наиболее целесообразно. Удачно выбрать уравнения и общие теоремы можно лишь на основе значительных навыков в решении задач или путем ряда неудачных проб и ошибок. Вместе с тем применение уравнений Лагранжа дает возможность быстро и безошибочно получить необходимые дифференциальные уравнения движения. Вообще говоря, при отсутствии ясного плана решения зад7чи лучше всего использовать уравнения Лагранжа. При этом существенную роль играет удачный выбор обобщенных координат.  [c.549]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Математическая запись принципа ускоряющих сил, выраженного во втором законе движения, в алгебраической или в векторной форме, не зависит от выбора той или иной инерциальной системы отсчета. Л.Эйлер разработал аналитический аппарат механики (дифференциальные уравнения движени5Г), дав систематическое изложение динамики материальной точки, твердого тела, идеальной жидкости. Он придавал чрезвычайно большое значение концепции Ньютона о пространстве и времени Всякий, кто склонен отрицать существование абсолютного пространства, придет в величайшее смущение. В самом деле, вынужденный отбросить абсолютный покой и движение, как пустые слова, лишенные смысла, он должен будет не только отбросить законы движения, покоящиеся на этом принципе, но и допустить, что вообще не может быть никаких законов движения. ..пришлось бы утверждать, что все происходит случайно и без всякой причины [7. С. 328].  [c.12]

Однако только в очень редких случаях удаётся найти все шесть первых интегралов. Но часто бывает достаточно знать один или два первых интеграла. Методы нахождения первых интегралов системы дифференциальных уравнений, описьшающих движение, основаны на общих теоремах динамики материальной точки.  [c.87]

Нам представляется неудачным термин гидравлика переменной массы , широко используемый Г. А. Петровым и некоторыми другими авторами. При установившемся движении масса жидкости в каждом неподвижном отсеке потока (эйлеровы переменные) остается постоянной. Поэтому такого типа течения, на наш взгляд, лучше называть потоками с переменным по пути расходом. Гидравлическая теория таких потоков лшжет быть построена на основе законов механики о движении тела переменной массы. В то же время такая интерпретация явления имеет смысл лишь прк гидравлическом (одномерном) его описании. Попытки отдельных авторов (А. С. Кожевников и др.) строить основные дифференциальные уравнения гидродинамики, базируясь на теореме Мещерского динамики материальной точки переменной массы, строга говоря, лишены основания, так как в гидродинамической постановке учет изменения расхода потока вследствие присоединения или отделения части расхода по длине требует лишь соответствующего назначения граничных условий.  [c.719]


Смотреть страницы где упоминается термин Дифференциальные уравнения динамики материальной точки : [c.46]    [c.245]    [c.27]   
Смотреть главы в:

Теоретическая механика в примерах и задачах Том 2 Динамика издание восьмое  -> Дифференциальные уравнения динамики материальной точки



ПОИСК



70 - Уравнение динамики

ДИНАМИКА Динамика точки

ДИНАМИКА Дифференциальные уравнения динамики материальной точки

ДИНАМИКА Дифференциальные уравнения динамики материальной точки

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ Введение в динамику. Дифференциальные уравнения движения

ДИНАМИКА ТОЧКИ Дифференциальные уравнения движения свободной материальной точки

Динамика Динамика материальной точки

Динамика материальной точки

Динамика точки

Дифференциальные уравнения движения материальной точки Мб Решение первой задачи динамики (определение сил по эаданнояу движению)

Дифференциальные уравнения движения материальной точки. Две задачи динамики

Дифференциальные уравнения движения несвободной материальной точки и их применение к решению двух основных задач динамики точки

Дифференциальные уравнения движения свободной материальной точки и их применение к решению двух основных задач динамики точки

Дифференциальные уравнения движения свободной материальной точки. Две основные задачи динамики

Дифференциальные уравнения точки

Материальная

Материальные уравнения

Некоторые простейшие применения дифференциальных уравнений движения материальной точки. Методические указания к решению задач динамики

ОСНОВНЫЕ ПОНЯТИЯ и ТЕОРЕМЫ ДИНАМИКИ СИСТЕМЫ Дифференциальные уравнения движения системы материальных точек в декартовых координатах

Основные формы дифференциальных уравнений динамики материальной точки

Отдел третий ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ Основные уравнения динамики материальной точки

Применение дифференциальных уравнений движения свободной материальной точки к решению второй задачи динамики точки

Применение дифференциальных уравнений движения свободной материальной точки к решению первой задачи динамики точки

Том второй. ДИНАМИКА ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ Введение в динамику. Дифференциальные уравнения движения

Точка материальная

Уравнение точки



© 2025 Mash-xxl.info Реклама на сайте