Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Об относительном движении системы материальных точек

Об относительном движении системы материальных точек  [c.49]

Если речь идет об относительном движении системы материальных точек, так что положение точки в инерциальных осях определяется в общем случае равенством  [c.189]

Теорема об изменении главного момента количеств движения системы материальных точек. Производная по времени от главного момента количеств движения системы материальных точек относительно неподвижного центра равна векторной сумме моментов всех внешних сил системы относительно того же центра, т. е.  [c.193]


Применяем теорему об изменении главного момента количеств движения системы материальных точек относительно оси г.  [c.202]

Эту задачу можно решить и другим способом, применив теорему об изменении главного момента количеств движения системы материальных точек относительно оси г  [c.219]

Теорема об изменении главного момента количеств движения системы материальных точек в относительном движении по отношению к центру инерции. Разложим движение материальных точек системы на переносное поступательное вместе с осями декартовых координат, начало которых совмещено с центром инерции системы, и относительное движение по отношению к центру инерции. При этом теорема об изменении главного момента количеств движения системы материальных точек в относительном движении по отношению к центру инерции имеет вид, тождественный аналогичной теореме в абсолютно.м движении  [c.241]

Теорема об изменении главного момента количеств движения системы материальных точек (со случаем сохранения) в относительном движении по отнощению к центру инерции системы щироко применяется в задачах динамики плоского движения твердого тела (см. следующий параграф) и движения свободного твердого тела, т, е. в тех случаях, когда движение твердого тела можно разложить на переносное вместе с осями координат, движущимися поступательно С центром инерции, и относительное по отнощению к этим осям.  [c.242]

Движение акробата в процессе выполнения сальто является сложным. Разложив его на переносное поступательное движение вместе с центром инерции и относительное вращательное вокруг горизонтальной оси X, проходящей через центр инерции, можно воспользоваться теоремой об изменении главного момента количеств движения системы материальных точек в относительном движении по отношению к этой оси  [c.242]

Третье уравнение (теорема об изменении главного момента количеств движения системы материальных точек в относитель 10м движении по отношению к центру инерции, записанная для случая вращения твердого тела вокруг подвижной оси, движущейся поступательно) описывает относительное вращательное движение вокруг оси, проходящей через центр инерции С твердого тела перпендикулярно к неподвижной плоскости.  [c.252]


Теорема об изменении главного момента количеств движения системы материальных точек в приложении к мгновенным силам. Приращение главного момента количеств движения системы материальных точек относительно неподвижного центра при ударе равно векторной сумме моментов относительно того же центра импульсов внешних мгновенных сил п  [c.559]

Применим к движению штампа В теорему об изменении главного момента количеств движения системы материальных точек в приложении к мгновенным силам (относительно оси Д])  [c.562]

Влияние гироскопических сил на свободные колебания твердого тела с четырьмя степенями свободы. Для составления дифференциальных уравнений малых колебаний твердого тела при наличии гироскопических сил следует применять теорему о движении центра инерции системы материальных точек вместе с теоремой об изменении главного момента количеств движения системы материальных точек в относительном движении по отношению к центру инерции.  [c.624]

Т. е. скорость конца вектора главного момента количеств движения системы материальных точек относительно некоторого центра равна главному моменту относительно того же центра внешних сил, приложенных к системе. Теорема об изменении момента количеств движения в этой геометрической форме носит наименование теоремы Резаля (1828—1896). Отметим, что величина К, как следует из (24), имеет размерность момента силы (Н-м), так как изображает скорость конца отрезка, представляющего вектор К, т. е. величину, измеряемую в Н-м-с.  [c.162]

Можно упростить интегрирование дифференциальных уравнений движения, используя теорему об изменении кинетической энергии системы материальных точек в задачах, где главный вектор и главный момент сил, приложенных к твердому телу, постоянны либо зависят от положений точек (угла поворота) твердого тела, а в число данных и неизвестных величин входят масса и момент инерции твердого тела относительно оси, проходящей через его центр инерции перпендикулярно к неподвижной плоскости, силы, приложенные к твердому телу, перемещения точек твердого тела (угловые перемещения), скорости точек твердого тела (угловые скорости) в начале и в конце этих перемещений.  [c.542]

Инерциальные и неинерциальные системы отсчета. Вопрос об относительном движении материальной точки тесно соприкасается с самыми основными идеями механики. Всякое движение точки (или тела) мы должны рассматривать относительно некоторой системы отсчета. До сих пор мы изучали движение по отношению к так называемой инерциальной системе отсчета (см. 14, п. 2), т. е. система отсчета, в которой справедливы основные законы динамики и по отношению к которой материальная точка, на которую никакие силы не действуют, движется по инерции (равномерно и прямолинейно). Инерциальную систему отсчета называют еще условно неподвижной, а движение по отношению к ней — абсолютным.  [c.438]

Следует подчеркнуть, что система отсчета всегда скрепляется с некоторым реальным телом, относительно которого изучается движение данной материальной точки и которое мы условно принимаем за неподвижное. Однако часто в рассуждениях забывают об этом теле и говорят просто о системе отсчета, понимая под этим систему координат и часы. Изучить движение данной материальной точки можно по отношению к различным телам. Но так как эти тела сами могут двигаться, то законы движения изучаемой точки окажутся, вообще говоря, не одинаковыми в разных системах отсчета.  [c.8]

В дальнейшем изложении, говоря об инерциальной, или условно неподвижной , системе отсчета, мы почти везде будем иметь в виду систему, связанную с Землей. В главе 24 мы рассмотрим с точки зрения классической механики задачу об относительном движении материальной точки, т. е. рассмотрим движение материальной точки относительно системы отсчета, которая сама движется по отношению к инерциальной системе.  [c.384]


Постараемся выяснить теперь, как изменяется кинетический момент системы материальных точек при действии на эту систему ударных сил. Сохраняя обозначения предыдущего параграфа и применяя к каждой точке системы теорему об изменении при ударе момента количества движения материальной точки относительно какого-нибудь неподвижного центра О ( 149), будем иметь  [c.586]

На кафедре теоретической механики Ленинградского механического института разработан безмашинный программированный контроль знаний студентов по девяти темам курса теоретической механики. Контроль проводился в течение четырех лет по двум темам статики (условия равновесия плоской и пространственной систем сил) и четырем темам кинематики (кинематика точки, вращательное и плоскопараллельное движения твердого тела, относительное движение точки). По трем темам динамики (колебательное движение материальной точки, теоремы об изменении кинетического момента и кинетической энергии системы материальных точек) программированный контроль внедрен в учебный процесс в качестве допуска к повторному написанию студентом контрольной работы по соответствующей теме динамики. Таким образом, программированный контроль по статике и кинематике охватывает всех студентов, по динамике — тех, кто получил неудовлетворительную оценку за контрольную работу. По указанным девяти темам разработаны карточки программированного контроля, содержащие чертеж и условия задачи. При этом мы отказались от распространенного выборочного метода, состоящего в том, что студенту предлагается выбрать правиль-  [c.13]

В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]

Рассмотрим движение несвободной материальной точки относительно инерциальной системы отсчета. Уравнение теоремы об изменении энергии будет иметь вид  [c.122]

Иногда оказывается, что невозможно найти пределы j и если рассматривать произвольные возмущения Ej и . Но можно найти эти пределы, если возмущения удовлетворяют некоторым условиям. Так возникло понятие об относительной устойчивости. Например, движение материальной точки по окружности будет устойчивым относительно прямоугольной системы координат, если наложить на возмущения движения условия, вытекающие из закона сохранения механической энергии, или, по терминологии Томсона и Тета, оно будет устойчивым для консервативных возмущений.  [c.327]

Движение гиростата вокруг центра тяжести. Понятие о задаче ОБ изменении широт. Основное уравнение моментов сохраняет, как известно, для материальной системы свой вид (47 ) также и в том случае, когда центр моментов во все время движения совпадает с центром тяжести системы. Это, в частности, имеет силу также и для гиростата, центр тяжести G которого в силу самого определения системы является точкой, неизменно связанной с твердой частью S. Как уже было отмечено выше (п. 24), то же самое можно сказать и о главных осях инерции относительно точки G, так что уравнение (47 ) продолжает оставаться в силе, если оно отнесено к этим осям. Это уравнение и в данном случае может однозначно определить гиростатический момент х, если известно движение 5 около О и задан результирующий момент внешних сил.  [c.221]

Теорема об изменении кинетического момента. Пусть Vjy — скорость точки Pjy системы в инерциальной системе отсчета, а — ее радиус-вектор относительно начала координат (рис. 82). Возьмем произвольную точку А пространства, которая может и не совпадать с какой-либо материальной точкой системы во все время движения. Точка А может быть неподвижной, а может совершать произвольное движение обозначим va ее скорость в выбранной инерциальной системе отсчета. Пусть — радиус-вектор точки относительно точки А. Тогда кинетический момент системы относительно точки А вычисляется по формуле  [c.159]

Однако в некоторых важных идеях теории относительности и механики Герца имеется много общего. В теории относительности движение планет вокруг Солнца объясняется без привлечения действующих сил при помощи представления об инерции как о фундаментальном свойстве тел. Планеты движутся аналогично телам в механике Герца по кратчайшим линиям в римановом пространстве. В этом отношении отличие теории относительности от механики Герца состоит в том, что в первой материальные движущиеся тела определяют метрику пространства — времени, его геометрию, в то время как у Герца такое движение определяется кинематическими условиями, создаваемыми скрытыми массами системы.  [c.238]

Теорему об изменении главного момента количеств движения системы материальных точек относительно неподвижной оси рекомендуется применять при рассмотрении движения материальной системы, в состав которой входит подвижная среда, врапгаюпгаяся вокруг этой оси. Если сумма моментов всех внешних сил системы относительно оси равна нулю, то можно получить соотношение между массами материальных точек, их скоростями и угловой скоростью вращения подвижной среды.  [c.194]

Задача о движении тела переменной массы. В качестве примера на применение теоремы об изменении количества движения рассмотрим задачу о движении системы материальных точек с переменной массой относительно неподвижной системы осей Oxyz. Пусть общая масса системы М = onst и вся система ограничена некоторой контрольной поверхностью 2. При движении системы некоторые нз ее точек выходят за пределы этой контрольной поверхности (рис. 187). Обозначим через m t) массу частиц, находящихся внутри контрольной поверхности в момент t, а через dm — приращение массы внутри контрольной поверхности за промежуток времени dt. Массу частиц, выделив-щихся за пределы контрольной поверхности за интервал времени dt, обозначим через dm. Контрольная поверхность 2 может перемещаться по отношению к системе координат Oxyz и изменять свою форму. Через 2 обозначим контрольную поверхность 2 в момент t + dt.  [c.312]


Теорема об изменении момента количества движения для си- темы частиц с переменной массой. Рассмотрим движение системы материальных точек, ограниченных контрольной поверх-юстью Е, и предположим, что отдельные частицы системы могут зыходить за пределы контрольной поверхности, а сама поверх-юсть перемещается некоторым образом относительно инерциаль-10Й системы координат Oxyz. Обозначим через К вектор момента количества движения всей системы материальных точек отно- ительно начала координат. Пусть Ki — момент количества дви->кения системы материальных точек, расположенных внутри контрольной поверхности S, а Кг — момент количества движения системы частиц, находящихся вне контрольной поверхности. Кроме того, будем предполагать, что в момент t  [c.325]

Теорема об изменении кинетической энергии материальной точки. Пусть точка М совершает переносное движение вместе с подвижно11 системой координат Охуг относительно основной системы координат ОлУА и относительное движение но отношению к системе координат Охуг (рис. 72). Абсолютным движением точки М является ее сложное  [c.329]

Теорема об изменении момента количества движения материальной точки. Производная по времени от вектора-момента количества движения Ко материальной точки, взятого относительно какого-либо неподвижного в инерциалъной системе координат центра  [c.282]

В предыдущих главах была изучена та часть реологии, которая стала классической и известна под названием механики сплошной среды и входит в учебники по механике после разделов механика материальной точки и системы материальных точек и механика твердого тела и системы твердых тел, в которых также рассматривается идеализация, и даже болЫпая, чем гуково тело и ньютоновская жидкость. Когда механика изучает движение планет вокруг Солнца, то планеты рассматриваются как материальные точки, каждая из которых обладает некоторой массой т. При таком изучении материальными свойствами небесных тел, будь они упругие тела, пластические или жидкие, полностью пренебрегают. Это является исходной предпосылкой механики Ньютона. Когда механика обращается к задачам о движении тел на Земле, она постулирует также несуществующее, абсолютно твердое тело. Если распространить принятую в главе I терминологию идеальных тел, то можно назвать абсолютно твердое тело евклидовым телом по имени Евклида (5 век до н. э.), который основал свою геометрию на предположении о существовании таких тел. В противоположность твердому телу Паскаль (1663 г.) предложил рассматривать материал, частицы которого могли бы двигаться одна относительно другой совершенно свободно, без какого-либо сопротивления. Это — жидкость, не обладающая какой-либо вязкостью, которая была названа идеальной жидкостью и которую можно назвать наскалев-ской жидкостью. Как евклидово тело, так и паскалевская жидкость не характеризуются никакими физическими постоянными, кроме массы. Следовательно, эти тела находятся вне области реологии. Затем в механику были введены два идеальных материала, характеризующиеся физическими постоянными и поэтому принадлежащие реологии (которая тогда еще не существовала). Эти тела были названы соответственно гуковым телом и ньютоновской жидкостью. Они являются классическими телами. В таких учебниках, как учебник Лява (1927 г.) по теории упругости и учебник Лэмба (Lamb, 1932 г.) по гидродинамике, задачи для этих тел сведены к задачам прикладной математики, после чего можно забыть об их физическом  [c.124]

Вопрос об относительном движении материальной точки тесно связан с основными понятиями механики. Как известно, всякое движение материальной точки можно рассматривать только по отношению к некоторой системе отсчета. Но различные системы отсчета могут совершать движение одна по отношению к другой. Предполагая, что в различных системах отсчета движение материальной точки полностью определяется силами, действующими на эту материальную точку, тотчас приходим к условию, что в различных системах отсчета на точку должны действовать различные силы. Нужно только научиться определять эти силы. В общем случае системы отсчета, относительно которых будет в дальнейшем изучаться движение материальной точки, могут быть неинер-циальными системами.  [c.284]

Теорему об изменении кинетического момента системы в ее движении относительно центра инерции можно было доказать иначе, не используя формулу (1.51), а исходя из основного закона динамики относительного движения ( 230 т. I). Как известно, всякую задачу при изучении относительного движения материальной точки можно решать как задачу об абсолЕОТ-ном движении, но вместо второго закона Ньютона для абсолютного движения нужно пользоваться основным законом динамики относительного движения  [c.66]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

Теорема об изменении количества движения. Пусть некоторая совокупность материальных точек движется относительно инерциальной системы координат Oxyz. Рассмотрим замкнутую поверхность 5, которая перемещается относительно Oxyz и деформируется. Материальные точки при своем движении могут входить в область пространства, ограниченную поверхностью 5, и могут выходить из нее.  [c.255]


Смотреть страницы где упоминается термин Об относительном движении системы материальных точек : [c.194]    [c.204]    [c.631]    [c.247]    [c.240]    [c.319]    [c.179]    [c.9]   
Смотреть главы в:

Курс лекций по теоретической механике  -> Об относительном движении системы материальных точек



ПОИСК



ДВИЖЕНИЕ В НЕИНЕРЦИАЛЬНЫХ СИСТЕМАХ ОТСЧЕТА Уравнения движения материальной точки относительно произвольной неинерциальной системы отсчета

Движение материальной точки

Движение материальной точки относительно подвижной системы отсчета

Движение относительное

Движение системы

Движение системы п материальных точек относительно одной из них

Материальная

Момент количества движения материальной точки и системы относительно центра и оси

Общие теоремы о движении системы материальных точек относительно центра масс

Относительное движение материальной точки

Относительное движение системы материальных точек в равномерно вращающейся системе отсчета

Относительность движения

Система материальная

Система материальных точек

Система точек

Теорема об изменении главного момента количеств движения системы материальных точек в относительном движении ио отношению к центру инерции

Точка Движение относительное

Точка материальная

Точка — Движение

Уравнение движения материальной точки относительно неинерциальной системы отсчета силы инерции



© 2025 Mash-xxl.info Реклама на сайте