Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные формы дифференциальных уравнений динамики материальной точки

Основные формы дифференциальных уравнений динамики материальной точки  [c.11]

ОСНОВНЫЕ ФОРМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.12]

После краткого рассмотрения систем дифференциальных уравнений движения материальной точки в различных формах остановимся на изучении двух основных задач динамики точки.  [c.321]

Дифференциальное уравнение в векторной форме, естественно, эквивалентно трем скалярным уравнениям. В зависимости от выбора осей координат, на которые проектируется основное уравнение динамики (1.1), можио получить различные формы скалярных дифференциальных уравнений движения материальной точки.  [c.244]


Форма, которую Лагранж придал дифференциальным уравнениям динамики, до сего времени служила только для того, чтобы с изяществом выполнять различные преобразования, для которых пригодны эти уравнения, и для того, чтобы с легкостью и притом во всей их широте выводить общие законы механики. Однако из этой же формы можно извлечь важную выгоду с точки зрения самого интегрирования этих уравнений, что, как мне кажется, добавляет новую ветвь к аналитической механике. Я наметил ее основные черты в сообщении, сделанном 29 истекшего ноября Берлинской академии, после того, как имел честь представить Вашей прославленной академии, приблизительно год назад, пример, способный дать почувствовать дух и полезность нового метода. Я нашел, что всякий раз, когда имеет место принцип наименьшего действия, можно следовать по такому пути в интегрировании дифференциальных уравнений движения, что каждый из интегралов, найденных последовательно, понижает порядок этих уравнений на две единицы, если отождествлять постоянно порядок системы обыкновенных дифференциальных уравнений с числом произвольных постоянных, которое вводит их полное интегрирование. Высказанное предложение имеет место также и в случаях, когда функция, производные которой дают составляющие сил, действующих на различные материальные точки, содержит явно время. Мы находим, например, в случае одной точки, вынужденной оставаться на заданной поверхности и подверженной действию только центральных сил, что дифференциальное уравнение второго порядка, которым определяется это движение, приводится к квадратурам, как только найден один-единственный интеграл. Наикратчайшие линии на поверхности входят в этот случай.  [c.289]

I. Исторические замечания. Уравнения движения механических систем можно получать исходя из весьма различных положений, которые могут рассматриваться, как основные принципы механики. Эти принципы должны полностью характеризовать движение системы материальных точек и быть эквивалентными всей системе дифференциальных уравнений движения. Все законы механики системы материальных точек, на которую наложены идеальные связи, могут быть получены из принципа Даламбера — Лагранжа (общего уравнения динамики). Тем не менее представляет интерес преобразовать общее уравнение динамики так, чтобы получить новую форму, эквивалентную этому уравнению, но отличную от него по структуре. Новые формы либо допускают некоторые обобщения, выходящие за рамки чисто механических задач, либо дают возможность получить новые формы дифференциальных уравнений движения. С теоретической точки зрения новые формы в некоторых случаях позволяют обнаруживать некоторые общие свойства системы, которые не всегда очевидны в первоначальной формулировке принципа. Полученный новый принцип может быть принят за основной закон, и из него можно вывести все свойства движения, если только он правильно отображает природу.  [c.500]


Возвратимся к предложению дополнительной аксиомы. Нам пред-ствляется, что вторая аксиома не обладает всей физической полнотой, нужной для теории. В ней отсутствует явный учет собственных возможностей движения материальной точки, ее собственных параметров. В ней нет дифференциальных уравнений движения. Мы оставляем в стороне попытку Пуанкаре принять основной принцип динамики прямо в форме дифференциальных уравнений второго порядка, [1]. Это, конечно, удобно и экономно, но слишком уж дедуктивно и априорно, без обших притязаний на обоснованность с учетом столь важных для механики сил.  [c.29]

Практическое значение теоремы об изменении импульса материальной точки при решении задач невелико, так как дифференциальная форма ее предоставляет основное уравнение динамики с разделенными переменными, и по сравнению с (6.1) она существенно новых соотношений не дает. Главная область применения теоремы в механике — это изучение мгновенных или ударных сил. Так называются силы, продолжительность действия которых весьма мала, и закон изменения их со временем практически остается неизвестным. Такие силы будут характеризоваться вектором импульса силы (9.3).  [c.111]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Векторное равенство (2), являющееся лишь другой формой основного уравнения динамики (1), выражает собой теорему об изменении количества движения материальной точки в дифференциальной форме производная по времени от количеетва движения материальной точки равна дейетеующей на эту точку еиле.  [c.571]

Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]



Смотреть главы в:

Теоретическая механика в примерах и задачах. Т.2  -> Основные формы дифференциальных уравнений динамики материальной точки

Теоретическая механика в примерах и задачах Том 2 Динамика издание восьмое  -> Основные формы дифференциальных уравнений динамики материальной точки



ПОИСК



70 - Уравнение динамики

ДИНАМИКА Динамика точки

ДИНАМИКА Дифференциальные уравнения динамики материальной точки

Динамика Динамика материальной точки

Динамика материальной точки

Динамика основное уравнение

Динамика точки

Дифференциальные уравнения динамики материальной точки

Дифференциальные уравнения точки

Материальная

Материальные уравнения

Основное уравнение динамики

Основное уравнение динамики точки

Основные Динамика

Основные дифференциальные уравнения

Точка материальная

Точка основная

Уравнение основное

Уравнение основное динамики материальной

Уравнение основное динамики материальной точки

Уравнение точки

Уравнения основные

Уравнения форме

Форма дифференциальная

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте