Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические соединения композиционных материалов

При механическом соединении композиционных материалов коэффициент концентрации напряжений в окрестности нагруженных и свободных отверстий может быть определен методами, приведенными, например, в книге Лехницкого [45] или в работе [77]. Они описаны также в гл. 1 настоящего тома.  [c.132]

Механические соединения композиционных материалов  [c.380]

Механические соединения композиционных материалов различаются по видам используемых металлических креплений клепаные, резьбовые и штифтовые. Применение того или иного вида соединения зависит от типа нагрузок (статические или усталостные), надежности, легкости в производстве, стоимости и от специальных условий (необходимости получения съемных, подвижных или других видов соединений).  [c.380]


Особенностью механических соединений композиционных материалов является то, что они могут не только выдержать большие нагрузки, но и перераспределить их. Эксплуатационные нагрузки на элементы соединений могут быть рассчитаны, но определить нагрузки, возникающие при самом акте соединения, можно только на уровне ориентировочных оценок. Обычно такие нагрузки для соединительных элементов малого диаметра должны быть менее  [c.388]

СОЕДИНЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ И ИХ МЕХАНИЧЕСКАЯ ОБРАБОТКА  [c.380]

Ниже приведены сравнения преимуществ и недостатков механических и адгезионных (клеевых) соединений композиционных материалов  [c.391]

Дается обзор работ, посвященных решению смешанных задач механики сплошных сред для тел с покрытиями. Такие исследования актуальны при создании методов расчета фундаментов и оснований, дорожных и аэродромных покрытий, ледовых переправ, гидротехнических сооружений, клеевых соединений, композиционных материалов, в связи с задачами тензометрии, в инженерной практике, при изучении вопросов трения и износа и т.д. Обсуждаются проблемы 1) моделирования физико-механических свойств покрытий 2) контакта жестких или упругих тел с линейно-деформируемыми основаниями, армированными тонкими покрытиями 3) износа и долговечности покрытий.  [c.459]

Применение конструкционных низколегированных сталей повышенной и высокой прочности, теплоустойчивых и жаропрочных хромомолибденованадиевых, нержавеющих хромоникелевых сталей, биметаллов и композиционных материалов для изготовления аппаратов актуализирует проблему механической неоднородности. Механическая неоднородность, заключающаяся в различии механических характеристик зон (шва Ш, зоны термического влияния ЗТВ и основного металла) сварного соединения, является, с одной стороны, следствием локализованных температурных полей при сварке структурно-неравновесных сталей, с другой - применения технологии сварки отличающимися по свойствам сварочных материалов с целью повышения технологической прочности.  [c.93]

Были начаты исследования с целью выяснить возможности использования перспективных композиционных материалов для изготовления подмоторного бруса (балки) центрального двигателя ступени Сатурн 8-11 [13]. Критичными для этого бруса параметрами являются прочность, жесткость и частота собственных колебаний. При работе двигателя он работает как стойка, передавая тягу центрального двигателя на лонжероны тягового конуса ступени и создавая реакцию радиальным ударным нагрузкам, возникающим при приложении к конусу тяги внешних двигателей. Существующий в настоящее время алюминиевый брус состоит из точеных центральных фитингов, четырех пар лучевых радиальных опор ( осьминога ) и точеных концевых фитингов для соединения с конусом. Лучевые опоры двутаврового сечения собираются на заклепках из тавровых полок и сотовой стенки. Ширина полок и толщина бруса уменьшается пропорционально расстоянию от осевой линии. Механическое соединение полок лучей с прилегающими узлами производится при помощи накладок и болтов.  [c.125]


Статьи, заключенные в данный сборник, содержат результаты исследований, выполненных за последние годы в области изучения микроструктурных особенностей деформационных процессов и разрушения в поликристаллических металлических материалах (в том числе композиционных) в условиях теплового и механического воздействия. При проведении исследований использованы методы качественной и количественной тепловой микроскопии в сочетании с другими физическими методами. В ряде работ содержатся сведения о методиках и аппаратуре, применяемых для получения прямых экспериментальных данных об изменениях микростроения и уровня механических свойств изучаемых материалов. Значительное внимание в сборнике уделено изучению микроструктурных особенностей развития пластической деформации сталей и сплавов, биметаллических композиций и сварных соединений при тепловом воздействии в условиях статического и циклического нагружения.  [c.4]

Из всего многообразия применяемых в данное время композиционных материалов системы металл—металл или металл—неорганическое вещество в зависимости от формы поверхности раздела могут быть выделены две основные группы I — материалы матричного типа, состоящие из различным образом расположенных упрочняющих частиц или армирующих элементов, соединенных связующим веществом, и II — материалы слоистого типа, к которым следует отнести биметаллы, а также различного рода многослойные металлические материалы (рис. 114). Предлагаемая схема охватывает лишь некоторые основные типы композиционных материалов. Необходимо отметить, что для создания рациональных композиций материалов как первой, так и второй групп очень важно изучить процессы взаимодействия компонентов. Эта взаимодействие может быть как физико-меха-ническим (возникающим в процессе совместного деформирования), так и химическим (образующимся в результате протекания диффузионных процессов). Следует различать первичное взаимодействие между компонентами, развивающееся на поверхностях раздела при изготовлении материала, и вторичное взаимодействие составляющих, возникающее в условиях службы материала при различных режимах теплового и механического нагружения.  [c.199]

Прочность клеевых соединений сильно зависит от способа и качества подготовки поверхности. Если для алюминиевых сплавов возможно использование агрессивных очистителей, удаляющих наружный слой, то для композиционных материалов необходимо пользоваться менее агрессивными очистителями во избежание обнажения волокон. Для удаления с поверхности посторонних включений допускается пескоструйная обработка или механическая очистка вращающейся стальной щеткой в мягких режимах.  [c.198]

Рассмотрены вопросы механики разрушения конструкционных материалов при низких температурах. Описаны результаты исследования механических свойств, чувствительности к надрезу, характеристик разрушения ряда алюминиевых, титановых, никелевых сплавов и сталей, а также некоторых композиционных материалов при низких температурах, вплоть до температуры жидкого гелия (4 К). Дана оценка свойств сварных соединений ряда сплавов при низких температурах.  [c.4]

В этом разделе будут рассмотрены два метода соединения деталей клеевой и механический. Особое внимание будет уделено технологии склеивания, так как этот способ снижает массу конструкции и стоимость узлов из композиционных материалов.  [c.270]

Механические способы соединения деталей из улучшенных композиционных материалов обычно применяются при наличии больших расслаивающих напряжений, когда требуются особые критерии надежности и в случае обязательной периодической разборки конструкции. Например, внутреннее давление топлива приводит к развитию больших расслаивающих напряжений (или растягивающих усилий, перпендикулярных ориентации слоев) внутри клеевых соединений в крыльевом встроенном топливном баке. В этом случае требуется механическое крепление. Однако использование механических крепежных деталей приводит к значительным концентрациям напряжений. Два способа их снижения основаны на замене соседних с отверстиями листов с ориентацией 0° на прокладочные полоски металла или на смягчающие полоски из стекловолокна или армированной углеродным волокном эпоксидной смолы ( 45°).  [c.274]


При использовании механических соединений слоистых композиционных материалов необходимо учитывать не только напряжения при растяжении и изгибе в композите, но и напряжения изгиба в соединении, потери прочности при растяжении за счет сверления материала, сдвиговые свойства соединения трение между соединяемыми частями, уменьшающее напряжение типы соединений и их усталостные свойства.  [c.380]

Определить абсолютные механические свойства адгезионных соединений для элементов из композиционных материалов или Из Металлов весьма сложно, так как они меняются в зависимости от типа композиционного материала, ориентации его структуры,  [c.405]

Если механические свойства связующего и волокнистого наполнителя могут быть достаточно подробно изучены, то изучение явлений, протекающих на границе стекло — связующее при механических воздействиях в готовом материале, представляет трудную задачу. Однако на основании изучения деформирования и разрущения моделей и косвенных исследований можно заключить, что качественное влияние свойств адгезионного соединения на механические свойства материала такое же, как и влияние отдельных компонентов стеклопластика. При этом возможно более интенсивнее проявление релаксационных процессов в композиционном материале вследствие неравномерного распределения напряжений по микрообластям структуры.  [c.9]

Физическая природа сил сцепления зависит от структуры материала, размеров трещины и концевой области. На малых расстояниях от края трещины преобладает непосредственное межмолекулярное взаимодействие, как и предполагалось в [2], а на относительно больших расстояниях от края трещины возможно преобладание механических связей , создаваемых, например, подкрепляющими волокнами в композиционных материалах или звеньями полимерных цепей, соединяющих поверхности трещины, в адгезионных соединениях.  [c.222]

Широкое применение гальванопластики в новой технике связано с получением заданных физико-механических свойств осажденных металлов, в том числе для работы в условиях высоких и низких температур. С этой целью разработаны новые электролиты и режимы для осаждения традиционных в гальванопластике металлов (меди, никеля, кобальта, железа, золота и серебра), сплавов кобальта и никеля, жаростойких металлов и их сплавов. Кроме того, созданы способы получения композиционных материалов путем осаждения металлов с порошками и нитями тугоплавких соединений, а также электролиты и режимы для осаждения алюминия, цинка, олова и тугоплавких металлов, ранее не применявшихся в гальванопластике.  [c.575]

Полимерные пленки являются важным элементом изоляции низковольтных электрических машин (на напряжение до 1000 В), где они используются в качестве витковой и корпусной изоляции обмоток. В настоящее время полимерные пленки широко применяются в массовых сериях электрических машин общепромышленного назначения, обеспечивая при малой толщине (0,04—0,2 мм) достаточно высокие запасы электрической и механической прочности изоляции обмоток. В ряде случаев полимерные пленки и композиционные материалы на их основе являются полноценными заменителями слюдяных материалов. Применение полимерных пленок в кабельной технике обусловливает возможность создания обмоточных и монтажных проводов, а также силовых кабелей с высокими электрическими и механическими характеристиками при относительно малой толщине изоляции. В последние годы выявлена высокая эффективность использования пленочных материалов в качестве диэлектрика силовых конденсаторов (обычно в сочетании с бумагой), а также конденсаторов, применяемых для различных специальных целен. Прогресс в области химии высокополимерных соединений стимулирует дальнейшее расширение применения полимерных пленок в производстве электрооборудования, обеспечивая существенное улучшение его техникоэкономических показателей, а также повышение надежности.  [c.106]

Современные требования к надежности ставят задачу увеличения ресурса работоспособности материала. Поиски привели к созданию нового класса материалов — композиционных, состоящих из разнородных конструктивных элементов, соединенных между собой механической связью.  [c.148]

Программа направлена на решение трех важных задач 1) выбор конструкционных материалов (для сверхпроводящих электрических машин) путем оценки их механических и физических свойств при температуре 4—300 К и оценки влияния на свойства технологии изготовления и способа соединения, 2) изучение свойств новых перспективных материалов, в частности композиционных, при низких температурах, 3) анализ, сбор и публикация доступных литературных данных по низкотемпературным характеристикам.  [c.30]

Для повышения износостойкости узлов трения в химическом машиностроении применяются композиционные пластмассы (с бронзой) для поршневых колец компрессоров, подшипников скольжения и др., а также возбуждающие ИП смазочные материалы в узлах трения сталь—бронза. Указанные способы предотвращения износа недостаточно эффективны при коррозионно-механическом изнашивании трущихся соединений, наблюдающемся при трении в насосах, перекачивающих кислоты и щелочи, в аппаратуре с перемешивающими устройствами и другом химическом оборудовании. Трущиеся детали изготавливаются из коррозионно-стойких сталей, а смазывание их производится водой либо исходным сырьем для получения химического продукта, большей 176  [c.176]

Первый способ включает в себя пайку припоями, обеспечивающими возможность получения в шве структуры твердых растворов, оптимальной при работе изделий в условиях воздействия агрессивных сред, циклических нагрузок и сверхнизких температур. В этом случае композиционные припои используются в виде многослойных фольг, покрытий, послойного нанесения порошков, сеток в сочетании с ленточным или порошковым припоями. Для снижения температуры пайки компоненты слоев подбирают таким образом, чтобы в процессе контактного плавления происходило образование жидкой фазы, обеспечивающей смачивание и растворение паяемых материалов, покрытий, буферных прослоек и легирование шва, что придает соединению высокие механические и коррозионные свойства. Так, для получения прочных паяных соединении из титановых сплавов применяют покрытия систем Си—Zr (0в 540- -640 МПа), сложные покрытия Си - (Со—Ni)-Си (0в Я  [c.56]


Обш,ая технологическая схема изготовления алмазного абразивного инструмента включает измельчение и сушку материалов, входяш,их в состав связки, приготовление шихты связки и смешивание ее с алмазным порошком, формование и термическую обработку алмазоносного слоя заданных формы и размеров и (одновременное или после завершения этих операций) соединение алмазоносного слоя с корпусом с последуюш,ей механической обработкой для придания окончательных точных форм и размеров. Производственные режимы при изготовлении алмазосодержащего композиционного материала определяются в основном типом связки и приведены ниже.  [c.141]

Композиционный материал с металлической матрицей имеет ряд преимуществ, которые очень важны при использовании конструкционных материалов. Эти преимущества создаются благодаря комбинации следующих свойств высокой прочности высокого модуля упругости высоких вязкости и ударной вязкости малой чувствительности к изменениям температуры или тепловым ударам высокой поверхностной стойкости и малой чувствительности к поверхностным дефектам высокой электро- и теплопроводности хорошей воспроизводимости свойств, а также хорошей технологичности основы при конструировании, производстве, обработке давлением и формоизменении, соединении и окончательной механической обработке.  [c.15]

Композиция алюминий — бериллий рассмотрена Тоем 135]. Композицию изготовляли путем диффузионного соединения при горячем прессовании бериллиевой проволоки с алюминиевой фольгой. Были получены хорошие механические свойства (удельный модуль упругости и удельная прочность) при использовании проволоки с прочностью 1,25 ГН/м (125 кгс/мм ). Проводили оценку сопротивления усталости и жаропрочности, которые также зависели от характеристик упрочняющих волокон. Однако вследствие исключительно высокой стоимости тонкой бериллиевой проволоки, обеспечивающей высокую прочность, использование этой композиционной системы для важных конструкционных материалов ограничено.  [c.45]

Физико-механические свойства износостойких покрытий, отличаюш,иеся в широком диапазоне (табл. 7.33), не дают оснований для отбора наилучших покрытий только по этим параметрам. Такое возможно для однослойных покрытий. Композиционные двойные, тройные и большие системы строятся по особым принципам, где важное значение могут иметь слои соединений с низкими физико-механическими свойствами. Для пояснения рассмотрим идеализированную схему композиционного покрытия. Контактирующий с обрабатываемым материалом наружный слой первый должен препятствовать адгезии и диффузии, образованию окисных пленок, сопротивляться термическим превращениям и хрупкому усталостному разрушению. Последний слой обеспечивает связь покрытия с инструментальным материалом, для чего от них требуется идентичность кристаллохимического строения (близкие параметры решетки и особенности кристаллов, максимальная разность атомных размеров не должна превышать 15 %), невозможность образования хрупких фаз при температуре резания, близость коэффициентов линейного расширения при пагреве, теплопроводности, других физико-химических свойств (модулей упругости и сдвига, коэффициентов Пуассона). Третий слой осуществляет барьерные функции между первым и последним слоями, повышая термодинамическую устойчивость покрытия, изменяя его теплопроводность и т.д. Три основных слоя связываются с помощью двух промежуточных слоев.  [c.164]

В разделах, посвященных физико-механическим свойствам твердых тел и пленок, дано целостное изложение теории деформационных и прочностных свойств не только кристаллических и поли-кристаллических тел, но и стекол, полимеров и композиционных материалов, получивших широкое применение в РЭА и ЭВА. В них освещена также физика процессов образования тонких пленок, природа адгезии, физика процессов, контролирующих механическую стабильность и надежность пленок и адгезионных соединений. Вообще все разделы книги построены по схеме физическая природа тех или иных свойств твердых тел — физические принципы работы яриборов, использующих эти свойства, — области применения и  [c.3]

Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]

I - металлическая матрица 2 - волокно 3 - предварительная обработка волокон 4 - формование полуфабрикатов 5 - получение слоистого материала из полуфабрикатов 6 - формование (получение композиционного материала и придание формы) 7 - вторичная обработка 8 - применение 9 - элементарные волокна 10 - жгуты, нити 11 - ткани 12 - короткие волокна (монокристал-лические усы" и т. д.) 13 - улучшение смачиваемости волокон металлом и адгезии с ним, регулирование реакционной способности поверхности волокон 14 -химическое и физическое осаждение в газовой фазе 15 - металлизация и т. д. 16 — сырые полуфабрикаты в виде листов или лент 17 — металлизованные в расплаве листы или ленты 18 - пропитанная расплавом лента 19 - листы, полученные методом физического осаждения в газовой фазе 20 — придание материалу заданных анизотропных свойств 21 — горячее прессование 22 — горячее вальцевание 23 - горячая вытяжка 24 — HIP 25 — литье с дополнительной пропиткой расплавом 26 — парафинирование и т. д. 27 — механическая обработка 28 - механическое соединение 29 — диффузионная сварка 30 - парафинирование 31 — электросварка 32 — склеивание и т. д.  [c.242]

Даже в изотропных металлических структурах узлов самолетов редко возникают однородные поля механических напряжений. В композиционных материалах за счет анизотропности структуры материала поля напряжений всегда анизотропны. Адгезионные соединения, таким образом, находятся в области несимметричных напряжений. Напряжения в адгезионных соединениях возникают уже во время процесса отверждения связующего при повышенной температуре. При определении геометрии соединения композитов адгезионным методом необходимо учитывать максимальные колебания напряжений, скорость изменения напряжения, необходимую размеростабильность соединения.  [c.392]


Механические свойства этих композиционных материалов были не вполне устойчивыми. Это объяснялось недостаточно полным соединением фольги с волокном и фольг между собой, раз-ориентировкой волокон и их деградацией. Средняя прочность волокна равнялась 300 ООО фунт/кв. дюйм (210,9 кгс/мм ), так что разрушающая деформация для этих волокон предполагалась равной 5000 мкдюйм/дюйм (0,5%), модуль упругости окиси алюминия 60 10 фунт/кв. дюйм (42 184 кгс/мм ). Для композиционных материалов с 22 об.% волокна максимальная величина модуля упругости составляла 27 10 фупт/кв. дюйм (18 983 кгс/мм ) или несколько больше значения, вытекающего из правила смеси. Данный образец имел прочность 125 тыс, фунт/кв, дюйм (87,9 кгс/мм ) и величину разрушающей деформации 5600 мкдюйм/дюйм (0,56%), так что последняя превысила ожидаемое значение для случая эффективного использования волокон. В этом образце обнаружена разориентировка волокон, однако соединение было хорошим, а деградация волокон, если имела место, то предполагалась малой. Высокое значение разрушающей деформации  [c.327]

Вторичная обработка боралюминия включает технологические операции, осуществляемые с основными видами полуфабрикатов из композиционных материалов, такими, как плоские плитьг, стержни и трубы. К ним относятся такие процессы, как формоизменение, соединение, механическая обработка и термообработка. Эти процессы обычно осуществляются на предприятиях, изготовляющих готовые детали. Поскольку боралюминиевый материал нашел в основном применение в авиационной промышленности, большая часть этих работ производится на авиационных заводах.  [c.445]

Преимущественным способом подготовки ПМ, в том числе и композиционных материалов (ПКМ), на основе реактопластов к склеиванию служит механическая обработка, например, струйная обработка (опескоструивание), механизированное (например, с помощью устройств типа полотера или дрели со специальными насадками) или pjniHoe шлифование наждачной бумагой средней зернистости 120-140 (стеклопластики) или с зернистостью не менее 280 (карбопластики). Абразивная обработка струйными методами используется для деталей толщиной не менее 3 мм. В качестве абразива при струйной обработке служат корунд, песок, чугунная крошка. Критерием качества обработки следует считать удаление глянца с поверхности и отсутствие ворсистости. Повышению долговечности клеевого соединения способствует обработка частицами корунда, на поверхность которых нанесен силикат. При ударе частиц с силикатным покрытием о поверхность оно растрескивается, и его осколки под влиянием выделяющейся при ударе теплоты закрепляются на обрабатываемой детали. Параметры режима обработки следующие давление сжатого газа (воздуха, азота) 4 бар, расход абразива 350 г/мин, расстояние от сопла аппарата до поверхности 15-65 мм, угол наклона струи к поверхности 90°, скорость перемещения вдоль поверхности 50 мм/с. Производственный участок, где осуществляется струйная обработка деталей, требуется изолировать от соседних помещений.  [c.527]

Композиционные материалы на основе полимеров. Они представляют собой многокомпонентную композицию, содержащую основу, теплостойкую арматуру и наполнитель. Основу в таких материалах называют связующим. Это каучуки, смолы и их комбинации. Чаще применяются фенолформальдегидные и анилин-формальдегидные модифицированные смолы, различные натуральные и синтетические каучуки и их комбинации. Наполнители регулируют рабочие и технологические свойства материала. Они подразделяются на металлические (медь, бронза, латунь, цинк, алюминий, свинец, железо, титан и другие металлы и соединения в виде порошков, стружки или проволоки) неметаллические (графит, углерод, кокс, сера и др.) минеральные (керамика, барит, сурик, глинозем, каолин, мел и др.) органические, например скорлупа ореха кешью. Каучуково-смоляная основа обладает недостаточно высокими механическими свойствами, особенно при повышенных температурах. Поэтому все материалы на полимерной основе содержат теплостойкую арматуру асбест, волокна, вату и т. п. Этот компонент во многом определяет свойства и технологию всего материала, и поэтому он часто отражается в его названии. Так, материалы, армированные асбестом, называются ФАПМ, т. е. фрикционные асбополимерные материалы.  [c.38]

В качестве отвердителей эпоксидных олигомеров могут применяться различные продукты. Важнейшими можно считать следующие щелочные соединения на основе аминов (производные аммиака НН.,, в котором атомы водорода замещены углеводородными радикалами) кислые — ангидриды различных органических кислот. В качестве отвердителей имеют применение также и некоторые олигомеры-(фенолформальдегидные, анилинформальдегидные). Амин-иые отвердители могут отверждать эпоксидные смолы при комнатных температурах, но для ускорения отверждения и получения оптимальных свойств отвержденного продукта рекомендуется повышенная температура (70—100° С). Ангидридные отвердители требуют применения температуры в пределах 120—200° С. Отверждение эпоксидных олигомеров происходит путем соединения олигомеров. с отвердителем без выделения летучих продуктов, что обеспечивает небольшую усадкув процессе отверждения. Иногда к смолам добавляют так называемые активные разбавители, уменьшающие вязкость для улучшения технологичности олигомеров при их использовании и входящие в состав отвержденных смол. Возможно использование ускорителей отверждения. На свойства отвержденных продуктов влияет не только тип олигомера, но и отвердитель. Олигомеры, отвержденные ангидридами, имеют более высокие электри-" ческие и механические свойства, чем отвержденные аминами. Нагревостойкость композиционных материалов на основе неорганических наполнителей и эпоксидных полимеров может быть доведена до класса Н, но в большинстве случаев эпоксидные полимеры дают системы изоляции классов нагревостойкости В и Р. Циклоалифатические полимеры имеют по сравнению с диановыми более высокие электрические свойства, влаго- и химостойкость, нагревостойкость, атмосферостойкость и трекингостойкость, а также большую скорость отверждения. Известным недостатком циклоалифатических смол является их хрупкость. Эпоксидные полимеры отличаются высокими механическими свойствами, хорошей адгезией к разным материалам. Они обладают хорошей короностойкостью. Следует отметить кроме  [c.141]

В пятом томе дана краткая характеристика неметаллических материалов, изложены общие принципы их выбора при конструировании деталей машин, приведены справочные сведения о физико-механических и технологических свойствах конструкционных, композиционных, оптически прозрачных, газонаполненных пластмасс, литьевых, прессованных, пленочных, листовых термопластов. В этом же томе даны справочные сведения о лакокрасочных, углеродистых, резиновых, древесных, бумажных, текстильных, асбестовых, силикатных материалах, клеях, коже и ее заменителях, промышленном стекле, ситаллах, стекло-эмали, каменном литье, стекловолокне, стеклоткани, пеностекле, фарфоре, глазури, вяжущих составах, обжиговой керамике, тугоплавких соединениях. Табл. 427, рис. 100, библ. 105 назв.  [c.4]

Волокна, полученные из рассмотренных способов, смешивают с порошком металла, образуюш,его матрицу. Выбор матричного металла определяется его совместимостью с материалом волокна, технологическими и эксплуатационными характеристиками композиционного материала. Обычно используют порошки алюминия, меди, титана и других тугоплавких металлов и их сплавов, а также жаропрочных сплавов на основе железа, никеля и кобальта. Смешивание порошка матричного металла с волокнами осуш,ествляют механическим (в случае дискретных волокон) или химическим (на волокна осаждают матричный металл из раствора его химического соединения) способом. Механическое смешивание лучше проводить в устройствах опрокиды-ваюш,егося типа (двухконусном смесителе, смесителе с эксцентричной осью и др.), так как барабанные смесители вызывают заметное комкование волокна.  [c.183]

Металлофосфаты и продукты их взаимодействия с различными тугоплавкими неорганическими соединениями оказались весьма перспективными композициями, из которых получают разнообразные электроизоляционные материалы высокой нагревостойкости слоистые и композиционные пластмассы, компаунды, покрытия и др. Эти материалы обладают удовлетворительными диэлектрическими и механическими свойствами и способны длительно работать при 600°С в разных газовых средах. Однако химические реакции, происходящие при нагревании в фосфатных электроизоляционных материалах, весьма сложны, специфичны для разных составов и еще мало изучены.  [c.54]

Все материалы металлы и славы, молекулярные соединения (например, аминокислоты), биологические (аморфные, кристаллические, например, вирусы и части скелета), композиционные (например, древесина и зубы) обладают определенной структурой, которая влияет на их свойства. Будучи расшифрованы, эти структуры способствуют пониманию поведения материалов. Наука о материалах, при всем их многообразии, основывается на понимании глубокой связи между структурой и свойствами материалов и показывает, каким образом размеры атомов, прочность и направленность связей обусловливают внутренюю структуру материалов и, следовательно, всю совокупность их физико-химических и механических свойств. При изучении и использовании материалов необходимо помнить следующий принцип ПОВЕДЕНИЕ МАТЕРИАЛОВ ВСЕГДА ОПРЕДЕЛЯЕТСЯ ИХ СТРУКТУРОЙ.  [c.3]



Смотреть страницы где упоминается термин Механические соединения композиционных материалов : [c.333]    [c.193]    [c.2]    [c.249]    [c.447]   
Смотреть главы в:

Справочник по композиционным материалам Книга 2  -> Механические соединения композиционных материалов



ПОИСК



Композиционные материалы

Соединение композиционных материалов и их механическая обработка

Соединения механические



© 2025 Mash-xxl.info Реклама на сайте