Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бериллиевая проволока

Алюминий + 40% бериллиевой проволоки 560 510 420 390 340 — — —  [c.71]

Свойства бериллия также исследовались для определения возможностей его использования в качестве волокнистого армирующего материала для композитов с полимерной матрицей, если он сам имелся в достаточном количестве в форме пластичной проволоки. Высокий модуль (на 40% больше, чем у стали) и низкая плотность (на 30% меньше, чем у алюминия) сделали его привлекательным конструкционным материалом для авиации, и можно было надеяться, что пластичность проволок улучшит ударные свойства композита. В работе [62] опубликованы некоторые результаты по растяжению бериллиевой проволоки диаметром 0,005 дюйм. Она разрушалась вязко даже при комнатной температуре после удлинения примерно на 1—3%. Позднее [36] исследован более детально предел упругости проволоки и определено ее остаточное удлинение при различных уровнях нагружения. Кроме того, исследованы также свойства длительной прочности проволоки при комнатной температуре. Данные показывают уменьшение прочности с ростом продолжительности действия нагрузки, однако результаты имеют большой разброс.  [c.278]


По-видимому, циклическая стабильность (отсутствие как упрочнения, так и разупрочнения) характерна для металлов, армированных волокнами, в противоположность обычно наблюдаемому циклическому упрочнению в отожженных металлах или циклическому разупрочнению в предварительно упрочненных металлах. Циклически стабильное напряженно-деформированное состояние алюминиевых сплавов, армированных либо вязкой бериллиевой проволокой, либо хрупкими борными волокнами, показано на рис. 3. Циклическое упрочнение технически чистого алюминия необычно тем, что оно не достигает величины насыщения, как у большинства металлов, а происходит непрерывно вплоть до разрушения [52] на рис. 3 для сравнения с поведением композитов показано непрерывное упрочнение алюминия 1235. В [55] сообщалось, что алюминий 6061-Т6, армированный непрерывными волокнами бора с объемным содержанием 25 и 40%, циклически упрочняется, но величина упрочнения минимальна и состояние композита может быть охарактеризовано как циклически стабильное.  [c.404]

Рис. И, а и 11, 6 превосходно иллюстрируют предсказанное влияние поля напряжений у конца трещины на вид роста трещины во время ее распространения из высокомодульного материала в низкомодульный в алюминиевом сплаве 1235, упрочненном бериллиевой проволокой. Усталостная трещина после пересечения поверхности раздела волокна и матрицы, как и предсказывалось, разветвилась и стала расти параллельно ей. Подобное разветвление трещин широко встречается в композиционных мате- Рис. И, а и 11, 6 превосходно иллюстрируют предсказанное влияние <a href="/info/12341">поля напряжений</a> у конца трещины на вид <a href="/info/188298">роста трещины</a> во время ее распространения из <a href="/info/518930">высокомодульного материала</a> в низкомодульный в <a href="/info/29899">алюминиевом сплаве</a> 1235, упрочненном бериллиевой проволокой. <a href="/info/34437">Усталостная трещина</a> после <a href="/info/470309">пересечения поверхности</a> раздела волокна и матрицы, как и предсказывалось, разветвилась и стала расти параллельно ей. Подобное разветвление трещин широко встречается в композиционных мате-
Рис. 12. Рост усталостных трещин в композитах, содержащих бериллиевую проволоку Рис. 12. <a href="/info/493667">Рост усталостных трещин</a> в композитах, содержащих бериллиевую проволоку

ТЕХНОЛОГИЧЕСКИЕ ПАРАМЕТРЫ ИЗГОТОВЛЕНИЯ И СВОЙСТВА КОМПОЗИЦИЙ АЛЮМИНИЙ — БЕРИЛЛИЕВАЯ ПРОВОЛОКА [1, 31]  [c.137]

Композиции титан — бериллиевая проволока пробовали получать при температурах от 590 до 870° С, давлениях от 420 до 5600 кгс/см и времени выдержки от 0,5 до 10 ч. Основной трудностью изготовления этих композиций являлось то, что при технологических температурах бериллий более пластичен, чем титан, и в процессе изготовления материала из чередующихся слоев бериллиевой проволоки и титановой фольги бериллиевая проволока деформируется. Кроме того, имеет место химическое взаимодействие титановой матрицы с бериллиевым упрочнителем. Оба эти фактора приводят к снижению прочности бериллиевой проволоки, поэтому были предприняты попытки обеспечить равномерное всестороннее давление на каждую проволоку в результате укладки проволоки в канавки, полученные в титановой фольге методом травления. Однако получить канавки с идеальной геометрией не удалось, и деформация проволоки наблюдалась и в этом случае. Уменьшение величины взаимодействия достигалось в результате снижения температуры прессования и уменьшения времени выдержки. Композиционный материал с наиболее высокими свойствами был получен в результате совместной на-  [c.142]

Прессование. Прессование заготовок для получения компактной детали или полуфабриката может быть произведено в стальных пресс-формах с использованием обычных гидравлических прессов. Давление прессования подбирают в каждом случае отдельно можно лишь отметить, что в случае, когда смесь содержит металлические волокна, например стальную, вольфрамовую или бериллиевую проволоку, давление прессования должно быть больше, чем это необходимо для прессования порошка материала матрицы. В ряде случаев при прессовании заготовок, содержащих большое количество упругих металлических волокон (30% и более), спрессованные заготовки разваливаются в результате пружинящего действия волокон. Для получения плотной и прочной заготовки в этом случае используют метод горячего прессования или методы деформации.  [c.152]

МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИЦИОННОГО МАТЕРИАЛА АЛЮМИНИЕВЫЙ СПЛАВ 6061 — БЕРИЛЛИЕВАЯ ПРОВОЛОКА [1, 210]  [c.212]

Среди различных композиционных материалов с арматурой особое место занимает алюминий, армированный стальной проволокой, кремнеземными волокнами, волокнами бора, усами окиси алюминия (сапфира), углеродными волокнами и бериллиевой проволокой.  [c.124]

Свойства композиционных материалов с матрицей из сплава Ti + 6А1 + 4V, армированной бериллиевой проволокой 8 , при растяжении при комнатной температуре  [c.356]

Проволоки — наиболее экономичный и доступный армирующий материал. Стальные и бериллиевые проволоки используют в композиционных материалах, эксплуатируемых при низких и умеренных температурах, а вольфрамовые и молибденовые — при умеренных и высоких.  [c.263]

Бериллиевая проволока. Бериллий обладает малой плотностью (1850 кг/м ) и в сочетании с большой прочностью и модулем упругости Юнга обеспечивает наиболее высокие значения удельных характеристик — прочности и жесткости.  [c.266]

Волочение бериллиевой проволоки ведут с подогревом до 400—480 °С. При этих температурах пластичность бериллия высокая и близка к пластичности малоуглеродистых сталей. Волочение бериллия осуществляют в металлической оболочке из пластичного металла, например никеля. После волочения оболочку удаляют стравливанием покрытия и выполняют сглаживание поверхности проволоки электрохимической полировкой. В качестве оболочки может использоваться и материал матрицы композиции, что исключает операции электрохимического травления и полирования.  [c.266]

Так, бериллиевая проволока диаметром 1,8 мм имеет при растяжении Ов = 1129 МПа, модуль упругости Е = 320-10 МПа, что соответствует удельным прочности (60 км) и жесткости (17300 км).  [c.266]

В сильно деформированном состоянии бериллиевая проволока имеет  [c.266]

Бериллиевую проволоку чаще применяют для упрочнения матриц с малой плотностью — алюми-Рис. 10.8. Влияние температуры графитизации на иевой, магниевой или ти-  [c.266]

Бериллиевую проволоку чаще применяют для упрочнения матриц с малой плотностью — алюминиевой, магниевой, титановой.  [c.298]

Высокопрочные проволоки — ракетная (стальная), молибденовая и вольфрамовая — особенно полезны как армирующие компоненты благодаря своей высокой прочности. При использовании металлических сплавов в виде проволоки могут быть получены более высокие прочностные характеристики, чем при использовании их в другом виде. Указанные проволоки обладают также хорошими характеристиками ползучести при высоких температурах предел прочности стальной проволоки AFG-77 составляет 2,8 ГН/м (280 кгс/мм ) при 600° С, молибденового сплава Т2М — 1,0 ГН/м (98 кгс/мм ) при 1100° С и торированной вольфрамовой проволоки (диаметром 1,27 мм) — 1,8ГН/м (189 кгс/мм ) при 1100° С. Однако эти проволоки не обладают высоким отношением модуля к плотности, свойственным другим волокнам. В противоположность этому бериллиевая проволока имеет очень высокое отношение модуля к плотности, как показано в табл. 1, но высокая стоимость ограничивает ее применение, и поэтому используются другие виды армирующих компонентов из бериллия.  [c.37]


Композиция алюминий — бериллий рассмотрена Тоем 135]. Композицию изготовляли путем диффузионного соединения при горячем прессовании бериллиевой проволоки с алюминиевой фольгой. Были получены хорошие механические свойства (удельный модуль упругости и удельная прочность) при использовании проволоки с прочностью 1,25 ГН/м (125 кгс/мм ). Проводили оценку сопротивления усталости и жаропрочности, которые также зависели от характеристик упрочняющих волокон. Однако вследствие исключительно высокой стоимости тонкой бериллиевой проволоки, обеспечивающей высокую прочность, использование этой композиционной системы для важных конструкционных материалов ограничено.  [c.45]

Другой класс систем со значительно повышенной нечувствительностью к реакции представляют пластичные волокна. Джонс показал, что в системе алюминий — коррозионно-стойкая сталь при отклонении технологических условий от оптимальных образуется алюминид железа [13]. Указанный алюминид растрескивается при наложении растягивающих нагрузок таким же образом, как борид титана (см. рис. 4). Однако проволока из коррозионно-стойкой стали обладает достаточной пластичностью, так что концентрация напрян<ений в вершине трещины ослабляется пластическим течением, которое проявляется в виде линий скольжения в стали. Непрерывное пластическое течение стали приводит к сжатию проволоки и удалению ее от зоны взаимодействия до разрушения путем образования шейки. Хотя точный механизм детально не был изучен, полагают, что титан, упрочненный бериллиевой проволокой, мон ет вести себя аналогичным образом.  [c.301]

Установлено, что свойства указанной проволоки можно изменять термообработкой и поверхностным травлением. Например, после поверхностного травления прочность проволоки диаметром 5 мил (0,13 мм) 150 ООО фунт/кв. дюйм (105,5 кгс/мм ) повысилось на 13—15% при незначительном изменении пластичности (исходное относительное удлинение проволоки составляло более 10%). Чувствительность к термообработке зависит, по-видимому, от характеристик данной партии проволоки и основана, вероятно, па явлении старения. Обычно термообработка при низких температурах (например, 600° F, 316 С) приводит к повышению прочности проволоки, особенно предела текучести, тогда как высокотемпературная термообработка (например, при 800° F, 427° С) вызывает, как правило, снижение прочности, но повышает стабильность проволоки при высоких температурах. Последнее обстоятельство имеет важное значение для технологии изготовления, поскольку сильно наклепанная бериллиевая проволока начинает терять свою прочность выше 900° F (482° С).  [c.323]

С помощью этого же процесса были приготовлены композиционные материалы с более высоким объемным содержанием проволоки для достижения повышенной жесткости при скручивании и более низкой плотности. Чтобы улучшить текучесть и сцепление потребовались несколько более высокие температуры горячего прессования (1450° F, 788° С), а это привело к снижению прочности бериллиевой проволоки.  [c.324]

Разработка более дешевых методов получения бериллиевых проволок методом гидростатического волочения.  [c.325]

Принципиальная схема прибора изображена на рис. 93. Внутренний цилиндр 1 от электродвигателя приводится во вращение со скоростью от 86 до 1000 об мин. Ведущий вал 7 с ведомым валом 2 соединены посредством упругого элемента 4, представляющего собой медно-бериллиевую проволоку диаметром 0,65 мм, длиной 22 см. На ведомом валу 2 и на трубе 6, соединенной с ведущим валом, вращаемым на двух прецизионных подшипниках 8, закреплены обтюраторы 5 и 5. Под обтюратором 3 установлена газоразрядная трубка 9 и коллиматор-иая щель 11. Над обтюратором 5 помещена вторая коллиматорная щель и фотоэлемент 12. Газоразрядная трубка питается от генератора сигналов 10 переменным током частотой 10 кгц. Выходное напряжение с фотоэлемента после детектора, усилителя 13 и ограничителя 14 подается на осциллограф /5 в виде импульсов прямоугольной формы.  [c.180]

Так, бериллиевая проволока наиболее пластична, когда гексагональная ось расположена перпендикулярно оси проволоки, а бе-риллиевый лист —когда базисные плоскости расположены параллельно плоскости листа.  [c.295]

Рис. и. Разветвление усталостных трещин в алюминиевом сплаве 1235, армированном бериллиевой проволокой, после прорастания трещиви через поверхность раздела в матрицу, состоящую из алюминия 1235 (Gi/Gj > 1) [22].  [c.419]

Алюминий — бериллиевая проволока. Бериллиевая проволока является перспективным упрочнителем благодаря малой плотности, равной 1,83 г/см , высокому модулю упругости и прочгюсти, равным соответственно 29 500 кгс/мм и 130 кгс/мм . Исследование возможности получения композиционного материала методом пропитки бериллиевой проволокой расплавом алюминия, по данным Флекка н Гольдштейна, дало отрицательный результат, так как при температуре 644° С между алюминием и бериллием происходит эвтектическая реакция, сопровождающаяся растворением бериллия. В связи с этим одним из основных технологических путей получения материала алюминий — бериллиевая проволока в настоящее время является диффузионная сварка под давлением. При этом в качестве предварительных заготовок ком-  [c.136]

Высокий модуль упругости, равный 30 900 кгс/мм , и малая плотность — 1,85 г/см при сравнительно высокой прочности, достигающей 105 кгс/мм , делают весьма перспективным применение берриллиевой проволоки в качестве упрочнителя алюминиевых и титановых сплавов. В табл. 51 приведены свойства материалов на основе алюминия, содержащих различные количества бериллиевой проволоки. Из таблицы видно, что при содержании 50 об. % бериллиевой проволоки композиционный материал имеет высокую прочность ( 70 кгс/мм ), в 3 раза более высокий по  [c.211]

Барьерные слои 71 Бериллиевая проволока 34, 136 Боралюминиевые композиции 9, 203, 209  [c.253]

Еще более эффективными могут оказаться комбинированные материалы с упрочняющей волокнистой оплеткой, имеющей более высокий модуль, чем применяемые в настоящее время стекловолокниты с модулем 5000— 6000 кПмм , в частности нити на основе бора или бериллиевая проволока. В этом случае достигается более высокая степень совместности деформации и более высокий показатель эффективности комбинированного материала.  [c.204]


Более тридцати лет тому назад в СССР были начаты исследования по получению алюминиевых сплавов, армированных стальной проволокой. Затем для упрочнения алюминия начали применять вольфрамовую и бериллиевую проволоку, волокна оксида кремния, диоксида циркония, оксида алюминия, бора, карбида кремния, углерода и др. В настоящее время наиболее распространены технологические схемы, предусмат-  [c.184]

Механические свойства ьомпозиционного материала алюминиевый сплав 6061— бериллиевая проволока 42J  [c.354]

Гудвин и Герман [101 показали, что для исключения расплющивания и коалесценции отдельных бериллиевых проволок совместно свитые проволоки из титанового сплава и бериллия можно подвергать горячему прессованию между разделительными фольгами из титанового сплава. Выбранная температура горячего прессования была самой низкой из возможных для достижения соединения, одпако она находилась в области, где бериллий быстро терял свою прочность. Например, бериллиевая проволока с прочностью при комнатной температуре 153 ООО фунт/кв. дюйм (107,6 кгс/мм ) разупрочняется до 121 ООО фунт/кв. дюйм (85,1 кгс/мм2) при 1250° F (673° С) и до 98 ООО фунт/кв. дюйм (68,9 itr /MM ) при 1325° F (718 С). Композиционные материалы с 33.об. % бериллия имели прочность в продольном направлении 147 ООО фунт/кв. дюйм (103,3 кгс/мм ) после прессования при 1350° F (732° С). Прочность в поперечном направлении была равна 84 ООО фунт/кв. дюйм (59 кгс/мм ), а модули упругости в обоих направлениях 24-10 фукт/кв.дюйм (16 874 кгс/мм ). Эти результаты находятся в превосходном согласии с теоретическими предсказаниями. Впоследствии усовершенствованная технология поверхностей очистки позволила осуществлять соединение горячим прессованием при 1275—1325° F (688—718° G) с дальнейшим улучшением свойств материала. Усталостные испытания показали, что предел выносливости определяется напряжениями матрицы у поверхности и что он одинаков для всех ориентаций.  [c.324]

Наиболее важными факторами, способными повлиять на предпочтение композиционного материала с титановой матрицей материалу с менее прочной матрицей, являются свойства во внеосевых направлениях и связанные с дорогостоящим методом трудности изготовления. Преимущества большей изотропности, достижимой с титановой матрицей, можно проиллюстрировать на примере системы титан — бериллий. Был изготовлен горячепрессованный материал Ti — 6% А1—4% V с применением 35 об. % переплетеной бериллиевой проволоки, обладавший в обоих главных направлениях модулем упругости 24-10 фунт/кв. дюйм (16 874 кгс/мм ) и прочностью 147 000 и. 84 ООО фунт/кв. дюйм (103,3 и 59 кгс/мм ) в продольном и поперечном направлениях. Композиционные материалы одноосноармированные бором (с покрытием или без него) обнаружили близкие значения жесткости в двух главных направлениях, но отличались значительно большим расхождением прочности вследствие расщепления волокон. В связи с этим представляется вполне очевидным, что одно из направлений будущих работ будет связано с попытками производителей волокна повысить прочность волокон этого типа в диаметральном направлении. Как указывалось ранее, заметное начало этому положило внедрение волокон диаметром 5,6 мил (0,14 мм).  [c.333]


Смотреть страницы где упоминается термин Бериллиевая проволока : [c.397]    [c.477]    [c.137]    [c.137]    [c.143]    [c.146]    [c.213]    [c.232]    [c.356]    [c.357]    [c.266]    [c.275]    [c.306]    [c.325]    [c.866]    [c.452]   
Структура и свойства композиционных материалов (1979) -- [ c.34 , c.136 ]



ПОИСК



Длительная прочность бериллиевой проволоки

Проволока пружинная Диаметр из бронзы бериллиевой 7, 10 — Свойства механические 13 — Термическая обработка



© 2025 Mash-xxl.info Реклама на сайте