Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приближенные методы решения задач теории пластичности

Приближенные методы решения задач теории пластичности  [c.511]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]


Общие методы решения задач теории пластичности. Для решения нелинейных уравнений теории упруго-пластических деформаций применяют различные варианты метода последовательных приближений. Решение задач теории пластичности сводится при этом к решению последовательности линейных задач, каждая из которых может быть интерпретирована как некоторая задача теории упругости.  [c.74]

Решение задач теории пластичности связано с решением системы нелинейных дифференциальных уравнений в частных производных (10.24). . . (10.28), что представляет собой чрезвычайно сложную задачу, которая в аналитическом виде решается, как правило, в исключительных случаях. Поэтому решение задачи теории пластичности чаще всего строится с помощью приближенных методов. Одним из них является метод последовательных приближений, предложенный А. А. Ильюшиным и называемый в теории пластичности методом упругих решений. Суть его заключается в рассмотрении последовательности линейных задач теории упругости, решения которых с увеличением порядкового номера сходятся к решению задачи теории пластичности.  [c.310]

Накопленный опыт применения метода упругих решений в форме метода переменных параметров упругости при решении задач теории пластичности говорит о том, что он обеспечивает сходимость последовательных приближений к точному решению, однако до настоящего времени строгого доказательства этого утверждения нет.  [c.316]

Точно так же возможно применение методов теории упругости к решению задачи теории пластичности, а именно прямого, обратного и полуобратного. Очень эффективным является приближенный метод, предложенный А. А. Ильюшиным — метод упругих решений.  [c.271]

Рассмотрим теперь ход решения задачи теории пластичности методом упругих решений. В первом приближении полагаем = 0. Тогда из формул (11.24) и (11.26) следует, что в первом приближении  [c.230]

В соответствии с методом переменных параметров упругости для получения следующего приближения принимают, что решение задачи теории пластичности сводится к решению соответствующей задачи теории упругости с такими  [c.100]

Идея линеаризации уравнений теории пластичности принадлежит А.А.Ильюшину, который предложил метод решения задач теории малых упругопластических деформаций - метод упругих решений [37]. Метод заключается в том, что пластическое тело заменяется упругим, имеющим такие же, как и пластическое, перемещения и деформации. Такая замена возможна при условии, что в теле возникают дополнительные напряжения, приводящие к дополнительным объемным и поверхностным силам. Эти первоначально неизвестные силы определяются путем последовательных приближений.  [c.231]


Изложенное выше послужило основанием к тому, что в последние годы в практике научных исследований и инженерных расчетов в области прочности все чаще прибегают к использованию приближенных численных методов решения задач теории упругости н пластичности.  [c.16]

Решение задач теории пластичности связано с решением системы нелинейных дифференциальных уравнений в частных производных, что представляет собой чрезвычайно сложную математическую задачу, которая в аналитическом виде решается, как правило, в исключительных случаях. Поэтому чаще всего используются приближенные методы. Одним из них является метод последовательных приближений, предложенный Ильюшиным для решения задач теории малых упругопластических деформаций при активном нагружении и называемый в теории  [c.44]

Приближенная трехмерная теория для упругих лопаток служит основой для построения расчета с учетом деформации пластичности и ползучести. В этом случае может быть использован метод дополнительных деформаций и общие алгоритмы решения задач теории пластичности и ползучести [3].  [c.323]

Так как большинство приближенных методов решения различных задач теории упругости, пластичности и ползучести основывается на классическом вариационном принципе, согласно которому действительная форма равновесия тела отличается от всех возможных форм тем, что для нее полная энергия системы  [c.58]

Если зависимость ё = /(ст) более сложная (отличная от степенной), то точное решение задачи в аналитической форме затруднительно. В этом случае используют методы последовательных приближений, которые совпадают с различными модификациями метода упругих решений в теории пластичности при замене в ее соотношениях деформации е ее скоростью ё (см. п. 8.7.3). Тогда при установившейся ползучести распределение напряжений в поперечном сечении балки совпадает с распределением Напряжений в упругопластической балке при законе деформирования е=/(а).  [c.67]

И, наконец, третий аспект книги — изложение результатов по линеаризированным задачам теории пластичности методом малого параметра, одним из мощных методов математической физики, позволяющем получать приближенные аналитические решения и установить качественные особенности характера исследуемых течений.  [c.32]

Расчеты на ползучесть по теории старения эквивалентны расчетам при нелинейных зависимостях между напряжениями и деформациями. Наиболее общая формулировка теории старения принадлежит Ю. Н. Работнову [124, 125]. Согласно ей напряжения и деформации в условиях ползучести для заданного значения времени определяются путем расчета детали на основе изохронной кривой ползучести для этой величины времени. Поэтому так же, как и в случае установившейся ползучести, результаты, полученные в теории пластичности [50, 60, 149], а также приближенные методы решения упруго-пластических и пластических задач, например метод упругих решений [50], метод переменных параметров упругости [8, 9], вариационные методы [60], могут быть использованы и для расчетов по теории старения.  [c.220]

Для решения задач пластичности можно применить следующий общий метод, называемый методом упругих решений 14. Положим в первом приближении а>о = > что = i ) == 0. Тогда из (2.73) и (2.76) имеем уравнения теории упругости в форме Ляме и граничные условия в напряжениях, т. е. в первом приближении имеем обычную задачу теории упругости. Предположим, что для данных массовых и поверхностных сил она решена, и найден вектор перемещения с его проекциями По формулам (2.63) и (2.64) находим деформации и по формулам (2.62) — напряжения в первом приближении  [c.124]

Для анализа технологических операций разработаны различные теоретические методы. Первой особенностью предлагаемой читателю книги является ее определенная односторонность Поскольку книг основана главным образом на работах автора, анализ технологических задач выполнен только методом сил, которые выражены через кинематические параметры деформируемой заготовки. Такой подход приводит к дальнейшему развитию приближенною метода решения дифференциальных уравнений равновесия и уравнений, описывающих состояние пластичности, и применению анализа с использованием функции тока. Решения, рассматриваемые в книге, выполнены с использованием теории пластического течения.  [c.3]


Решение уравнений пластичности в общем случае весьма сложно. Поэтому имеются приближенные решения, которые значительно упрощают общие рещения. Метод упругих решений, основанный на принципе последовательных приближений, нашел широкое применение в приближенном решении задач пластичности. При этом решается задача теории упругости для заданных внешних сил X, У, 2, а, <3г и находятся перемещения и,  [c.108]

Относительно процесса последовательных приближений по рассмотренной модификации метода упругих решений можно заметить, что в теории пластичности доказана его сходимость к точному решению для задач, в которых граничные условия формулируются только в перемещениях (и = v = w 0) или в напряжениях при  [c.313]

Наиболее эффективным из приближенных методов в теории пластичности следует считать метод последовательных приближений А. А. Ильюшина, именуемый методом упругих решений [3] в нем для первого приближения принимается решение аналогичной задачи теории упругости (со сходственными граничными и другими условиями), благодаря чему в первом приближении выясняются границы между упругими и пластическими зонами как по длине стержня (пластинки и др.), так и по высоте сечения. Это позволяет в первом приближении вычислить для каждой точки такого сечения значение числа ш, входящего в основной физический закон пластичности (4.13). Зная величину ш, можно в порядке первого уточнения исправить ранее вычисленные компоненты напряжения, внести поправки в первоначальные основные уравнения теории упругости, что определит новые границы между упругой и пластическими зонами,  [c.193]

В методе дополнительных деформаций полагают, что деформация пластичности является дополнительной (типа анизотропной температурной деформации) ill, 56]. Основной в этом случае является обычная задача теории упругости с постоянными параметрами упругости, что существенно упрощает решение. Однако структура процесса последовательных приближений оказывается несколько слол<нее, чем в методе переменных параметров упругости.  [c.131]

Решение многих упруго-пластических и пластических задач сопряжено со значительными трудностями, что обусловило широкое применение в теории пластичности различных приближенных методов, из которых наиболее распространенными являются вариационные и последовательных приближений. В методах последовательных приближений упруго-пластическая задача сводится к последовательному решению упругих задач, в связи с чем они называются методами упругих решений. Наиболее общий вариант этого метода разработан А. А. Ильюшиным [38]. В дальнейшем он был развит в работах И. А. Биргера.  [c.46]

Метод решения вариационного уравнения Лагранжа. Уравнение Лагранжа (6.41) дает удобный метод приближенного решения задач МДТТ без дифференцирования напряжений. Это особенно важно при решении задач теории пластичности. Представим выражение Oijbeij в виде  [c.128]

Вариационное уравнение дает возможность получения приближенного решения задачи теории пластичности прямыми вариационными методами, в частности методом Ритца.  [c.307]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

При решении задачи теории пластичности можно использовать те же способы, что и в теории упругости решение в напряжениях, в перемещениях и смешанный способ. Точно так же возможно применение методов теории упругости, а именно прямого, обратного и полуобрат-ного. Однако решение задачи теории пластичности имеет свои специфические особенности вследствие нелинейности. Эффективным является приближенный метод, предложенный А. А. Ильюшиным, — метод упругих решений (разновидность метода последовательных приближений).  [c.229]

Широко известно, что одним из первых математиков, принимавших участие в становлении МКЭ, был Курант. Он представил приближенный метод решения задачи кручения Сен-Венана с помощью принципа минимума дополнительной энергии, используя линейную аппроксимацию функции напряжений внутри каждого из совокупности треугольных элементов [1]. С другой стороны, наиболее важными и исторически первыми среди пионерских работ по МКЭ в задачах расчета конструкций считаются статьи Тёрнера, Клафа, Мартина и Топпа [2] и Аргириса и Келси [3]. После появления этих статей вариационный метод стал интенсивно использоваться в математических формулировках МКЭ. И обратно, быстрое развитие МКЭ сообщило мощный стимул к разработке вариационных методов за последнее десятилетие появились новые вариационные принципы, такие, как вариационные принципы со смягченными условиями непрерывности [4—8], принцип Геррмана для несжимаемых или почти несжимаемых материалов [9, 10] и для задач изгиба пластин [11, 12] и т. д. Цель части В состоит в том, чтобы дать краткий обзор достижений в области вариационных принципов, которые служат основой МКЭ в теории упругости и теории пластичности. С практическим использованием этих принципов при формулировке МКЭ читатель может ознакомиться по работам [5—7].  [c.340]


Появление современных быстродействующих ЭВМ существен-во расширило границы применения строгих математаческих методов в механике деформируемого тела. Это прежде всего приближенные численные методы решения задач теории упругости, пластичности и ползучести, рассматриваемые в настоящей главе.  [c.40]

Большой вклад в теории пластичности и пЪлзучести был сделан советскими учеными, которым принадлежит анализ и развитие теорий, экспериментальная проверка их, решения задач по различным теориям, разработка приближенных методов решения задач и внедрение расчетов за пределами упругости и на ползучесть в технику.  [c.8]

В трудах советских ученых А. А. Ильюшина [34], [35], В. В. Соколовского [78] и зарубежных исследователей получили решение многие актуальные и интересные задачи, однако наряду с более или менее строгими решениями в теории пластичности находят приложение и прикладные инженерные методы, успешно разрабатываемые А. А. Гвоздевым [26], А. Р. Ржаницыным [74], А. А. Чирасом [85] и др. Большой вклад в развитие приближенных решений внесен Н. И. Безуховым. Одна из первых его работ [9] по расчету конструкций из материалов, не следующих закону Гука, по глубине обобщений и по достигнутым результатам стала классическим исследованием, наложившим существенный отпечаток на развитие прикладных методов теории пластичности. Большой интерес представляет также и работа [10], в которой был предложен эффективный прием определения деформаций стержней при упруго-пластическом изгибе.  [c.172]

Как было отмечено выше, решение физически нелинейных задач, к которым относятся задачи теории пластичности, сводится к нелинейным дифференциальным уравнениям. Поскольку аналитическое решение таких уравнений удается получить лишь в простейших случаях, широкое распространение получили различные приближенные методы, основанные на линеаризавд1и уравнений теории пластичности. Ниже рассматриваются три таких метода.  [c.511]

Матрица и вектор реакций кольцевого элемента для очередного приближения по методу Ньютона — Рафсона при решении осесимметричной задачи теории пластичности вычисляются с помощью процедуры МТА321, в которой при вычислении матрицы  [c.113]

Решение задач вязкоупругопластичности связано с решением системы нелинейных интегро-дифференциальных уравнений в частных производных типа (1.68), (1.69). Это представляет собой не менее сложную математическую проблему, чем задачи теории пластичности. 17оэтому воспользуемся здесь методом последовательных приближений, который базируется на методе упругих решений Ильюшина, рассмотренном ранее.  [c.62]

Метод последовательных приближений для решения задач деформационной теории пластичности был разработан Мендельсоном и Мэнсоном [171]. Уравнения равновесия и совмест-  [c.136]

Решение упруго-пластических задач, как правило, сопряжено со значительными трудностями. Многие задачи расчетов за пределами упругости до сих пор не имеют решения. Поэтому в теории пластичности еще в большей степени, чем в теории упругости, имеют значение приближенные методы решения. Наиболее распространенными 113 них являются вариационные методы, а также методы, в которых упруго-пластическая задача сводится к последовательности упругих шдач в результате применения процесса последовательных прибли-> <ений. Последние методы могут быть названы методами упругих решений.  [c.135]

Сопротивление материалов вместе с такими смежными дисциплинами, как теории упругостй, пластичности, ползучести, строительная механика и другие занимается вопросами, связанными с поведением деформируемых твердых тел. В теории упругости, по сути, анализируются те же вопросы, что и в сопротивлении материалов, но задачи решаются в более точной постановке, свободной от упрощающих гипотез. Поэтому для их решения приходится использовать сложный математический аппарат, что в какой-то степени ограничивает возможность их применения в практических инженерных расчетах. Однако результаты более точного и глубокого анализа явлений, рассматриваемых в теориях упругости, пластичности и других дисциплинах, достаточно широко используются в сопротивлении материалов при создании приближенных методов расчета.  [c.176]

Предлагается методика численного анализа поведения произвольных тонкостенных оболочек вращения с большим показателем изменяемости геометрии (гофрированные, сильфонные, оболочки с начальньши неправильностями и т. д.), подверженных осесимметричному силовому и температурному нагружению при конечных смещениях. Явления ползучести и пластичности, возникающие при этом, моделируются системой дополнительных сил в уравнениях типа Рейснера. Для описания начальной и последующих геометрий оболочек и уравнений состояния используются онлайновые функции. Решение соответствующих нелинейных краевых задач теории оболочек осуществляется методом факторизации (разностной прогонки) для последовательных приближений.  [c.184]

Для решения задачи определения напряженного состояния в области пластичности применяют метод упругих решений, основанный на теории малых упругопластических деформаций [23]. Метод сводится к повторению последовательности упругих решений с переменными параметрами упругости или с дополнительными нагрузками [6]. Для этого программа решения неоднородноупругой задачи дополняется группой команд вычисления переменных параметров упругости (или дополнительных нагрузок) и используется повторно [1]. Сходимость приближений для материалов с упрочнением — устойчивая. При решении  [c.609]

Рассмотрение деформации П. за пределами упругости ведётся на основе тех или иных пластичности теорий теории малых упругопластич. деформаций, теории течения и др. При решении задач с помощью теории малых упругопластич. деформаций может быть применён метод упругих решений, состоящий в построении ряда гю-следоват, приближений, для каждого из к-рых применяется аппарат упругой задачи. Если поведение материала П. зависит от времени, расчёт ведётся с помощью ползучести теории, в частности так рассчитывают конструкции, испытывающие действие высоких темп-р.  [c.626]

В теории упругости и пластичности применяют и приближенные методы. В связи с этим различают математическую и прикладную теорию упругости и пластичности, причем в последнем случае решение задач базирхется на ряде дополнительных допущений.  [c.4]

Если закон деформирования материала оказывается более сложным, то задача о щ>у-чении может быть решена методом последовательных приближений (методом упругих решений) точно так же, как задача о кручении упругопласгического стержня, выполненного КЗ упрочняющегося материала. В соотношениях теории пластичности деформации заменяют их скоростями.  [c.68]


Смотреть страницы где упоминается термин Приближенные методы решения задач теории пластичности : [c.137]    [c.13]    [c.9]    [c.112]    [c.74]    [c.244]   
Смотреть главы в:

Сопротивление материалов с основами теории упругости и пластичности  -> Приближенные методы решения задач теории пластичности



ПОИСК



Задача и метод

Задачи и методы их решения

Задачи теории пластичност

Метод теории решений

Методы приближенные

ПЛАСТИЧНОСТЬ Теории пластичности

Пластичность методы решения задач

Приближенная теория

Приближенное решение методом малого параметра плоских упругопластических задач теории идеальной пластичности

Приближенные методы решения

Приближенные методы решения задач

Решения метод

Решения приближенные

Теория Метод сил

Теория Методы решения задач

Теория пластичности

Теория пластичности — Задача



© 2025 Mash-xxl.info Реклама на сайте