Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема об изменении кинетического момента и кинетической энергии системы

Абсолютно твердое тело представляет собой множество точек, расстояния между которыми не изменяются. В силу специфики связей движение такой системы полностью описывается теоремами об изменении количества движения, кинетического момента и кинетической энергии. Поэтому свойства движения, выделяемые этими теоремами, проявляются в динамике твердого тела особенно выпукло.  [c.443]


Теорема об изменении кинетического момента и кинетической энергии системы  [c.480]

В работе 1946 г. Космодемьянский выводит основные теоремы о движе- 241 НИИ центра масс системы, об изменении главного вектора количества движения, кинетического момента и кинетической энергии тела переменной массы. Однако уравнения движения тела переменной массы, выведенные этим путем, не описывали движения таких объектов, где необходимо было учитывать внутреннее относительное движение частиц, реактивное действие которых исключалось гипотезой удара или мгновенного контакта.  [c.241]

На кафедре теоретической механики Ленинградского механического института разработан безмашинный программированный контроль знаний студентов по девяти темам курса теоретической механики. Контроль проводился в течение четырех лет по двум темам статики (условия равновесия плоской и пространственной систем сил) и четырем темам кинематики (кинематика точки, вращательное и плоскопараллельное движения твердого тела, относительное движение точки). По трем темам динамики (колебательное движение материальной точки, теоремы об изменении кинетического момента и кинетической энергии системы материальных точек) программированный контроль внедрен в учебный процесс в качестве допуска к повторному написанию студентом контрольной работы по соответствующей теме динамики. Таким образом, программированный контроль по статике и кинематике охватывает всех студентов, по динамике — тех, кто получил неудовлетворительную оценку за контрольную работу. По указанным девяти темам разработаны карточки программированного контроля, содержащие чертеж и условия задачи. При этом мы отказались от распространенного выборочного метода, состоящего в том, что студенту предлагается выбрать правиль-  [c.13]

Теоремы о движении центра инерции, об изменении количества движения системы и об изменении кинетического момента системы позволяют исключить из решения задач механики внутренние силы. Этим иногда удается упростить математическое решение механической задачи, однако одновременно с этим теряется возможность глубже проникнуть во внутренние физические связи между составными частями системы, утрачивается возможность иметь более глубокие и полные представления о том физическом явлении, которое составляет смысл задачи механики. Этот недостаток отсутствует в теореме об изменении кинетической энергии.  [c.93]


Следует, однако, отметить, что этот порядок решения второй задачи динамики механической системы обычно не применяется, так как он слишком сложен и почти всегда связан с непреодолимыми математическими трудностями. Кроме того, в большинстве случаев при решении динамических задач бывает достаточно знать некоторые суммарные характеристики движения механической системы в целом, а не движение каждой из ее точек в отдельности. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики механической системы, являющихся следствиями уравнений (4). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии.  [c.570]

Однако бывают случаи, когда силы зависят не только от положения, но еще и от скорости и времени или зависят только от скорости или от времени. Например, в электродвигателях (кроме синхронных машин переменного тока) развиваемый ими движущий момент зависит, как правило, от угловой скорости их ротора точно так же в центробежных насосах и вентиляторах потребляемый момент изменяется в квадратичной зависимости от угловой скорости (о механических характеристиках машин см. п. 27). В этих случаях теорема об изменении кинетической энергии не может свести задачу i интегрируемым дифференциальным уравнениям (так как работа сил не может быть определена без знания самого закона движения), поэтому задача определения движения машины должна в таких случаях строиться на решении дифференциального уравнения движения системы в обобщенных координатах, соответствующего обобщенным силам или обобщенным моментам, т. е. так называемого дифференциального уравнения Лагранжа 2-го рода. Для установления этого уравнения воспользуемся зависимостью (48). Из нее для бесконечно малого промежутка времени получим  [c.251]

Общие теоремы динамики системы материальных точек теоремы количеств движения и моментов количеств движения, а также теорема об изменении кинетической энергии имеют широкое применение при изучении движений сплошных сред и, в частности, жидкостей и газов. Они были уже применены в предыдущих параграфах при выводе основных уравнений механики сплошных сред, причем использовалось лагранжево представление движения. Остановимся на некотором своеобразии применения этих теорем, связанном с эйлеровым представлением движения.  [c.75]

В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]

Далее доказывается теорема об изменении кинетической энергии системы, изучаются свойства кинетической энергии системы, указываются способы вычисления ее для твердого тела при различных случаях движения. В связи с последним рассматриваются осевые моменты инерции и их свойства. Затем доказывается теорема об элементарной работе сил, действующих на абсолютно твердое тело на основании определения работы сил, действующих на точки материальной системы, и теоремы о распределении линейных скоростей в свободном твердом теле. Здесь естественно вводятся понятия о К/ оменте силы относительно центра и оси, о главном векторе и главном моменте сил относительно произвольного центра.  [c.69]

С теоремой об изменении кинетической энергии системы связано определение уравновешенной системы сил, действующих на абсолютно твердое тело система сил называется уравновешенной, если она своим действием не изменяет кинетическую энергию твердого тела на его произвольных малых перемещениях. Отсюда и из теоремы об изменении кинетической энергии системы вытекают необходимые и достаточные условия уравновешивания систем сил, действующих на абсолютно твердое тело равенство нулю главного вектора и главного момента сил относительно произвольного центра. Как частные случаи из них получаются условия уравновешивания систем сходящихся сил, систем сил параллельных в пространстве и на плоскости, произвольной плоской системы сил.  [c.70]


Построение общей теории движения тел переменной массы можно выполнить при помощи основных теорем механики теоремы об изменении количества движения, теоремы об изменении кинетического момента и теоремы об изменении кинетической энергии. Такой путь изучения движения тел переменной массы является наиболее простым и естественным. К формулировкам основных теорем механики для тел, масса которых изменяется с течением времени, можно идти различными путями. Мы будем следовать методу, широко применяемому в механике тел постоянной массы, рассматривая тело переменной массы как совокупность точек переменной массы, движение которых определяется уравнением Мещерского. Зная уравнения движения точки переменной массы и рассматривая тело как совокупность точек, можно получить простые формулы, выражающие основные теоремы динамики для тела переменной массы. Ограничимся в этой главе рассмотрением таких тел переменной массы, для которых излучение (отбрасывание) частиц происходит с некоторой части поверхности тела, причем частицы, не имеющие относительной скорости по отношению к системе осей координат, связанной с телом, считаются принадлежащими телу, а частицы, имеющие относительную скорость, телу не принадлежат и никакого влияния на его движение не оказывают. Реактивные силы и моменты понимаются во всем дальнейшем как результат контактного взаимодействия отбрасываемых частиц и тела в момент их отделения от основного тела.  [c.89]

Предположим, что система сама придет в движение. По теореме об изменении кинетической энергии элементарное приращение кинетической энергии равно сумме элементарных работ всех активных сил системы и реакций связей. Эта сумма положительна, так как в состоянии покоя в момент tQ  [c.211]

Но существует подвижная система отсчета, являющаяся в общем случае неинерциальной, такая, что для движения в этой системе отсчета теоремы об изменении кинетического момента и кинетической энергии выглядят точно так же, как и в инерциальной системе. Этой подвижной системой отсчета является кенигова система координат, т. е. (см. п. 81) поступательно движущаяся система координат с началом в  [c.174]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

Пример 1. Целесообразность использования понятия о вириале количества движения показывает задача о соударении двух одинаковых однородных шаров. Пусть движение шаров является поступательным с одинаковыми по величине скоростями по прямой, соединяющей центры шаров, удар абсолютно упругий в предположениях стереомеха-нической теории, ударные активные силы отсутствуют. Как известно, в доударном и послеударном состояниях системы одинаковы её основные динамические величины (количество движения, кинетический момент и кинетическая энергия). Однако между шарами происходит обмен движениями , который перечисленные динамические величины не отражают. В тех же условиях за время движения вириал количества движения изменяется, и это изменение нетрудно найти с помощью теоремы об изменении вириала количества движения.  [c.102]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]


Предварительные замечания, В обшем курсе динамики системы изложены так называемые законы динамики, т. е. некоторые об-и1ие теоремы, указывающие, как изменяются скорости частиц системы в зависимости от данных активных сил и от реакций связей. Это были закон изменения количества движения, закон изменения кинетического момента и закон изменения кинетической энеогии. Каждая такая теорема в частном предположении об активных силах и реакциях системы может непосредственно привести к интегралам уравнений движения к закону сохранения количества движения (или сохранения движения центра масс), к закону сохранения кинетического момента, к закону сохранения энергии. Но зато, вообще говоря, ни один из названных законов не в состоянии заменить собой всей совокупности уравнений движения системы. Другими словчми, движение системы в общем случае не может быть, вполне охарактеризовано одним каким-либо из упомянутых законов.  [c.347]

В главе 7 сформулированы и доказаны основные теоремы гиперреактивной механики для тела переменной массы, включая теоремы об изменении количества движения, кинетического момента, кинетической энергии, и ряд других (теорема о движении центра масс, теорема об изменении кинетического момента в подвижной системе координат).  [c.12]

С теоремой об изменении кинетической энергии системы связано определение эквивалентных систем сил две систёмы сил, действующие на абсолютно твердое тело, называются эквивалентными, если они своим действием вызывают одинаковые изменения кинетической энергии тела на одинаковых произвольных элементарных перемещениях, т. е. на этих перемещениях выполняют одинаковые элементарные работы. Из этого определения вытекает, что необходимыми и достаточными условиями эквивалентности двух систем сил, действующих на абсолютно твердое тело, являются равенства их главных векторов и их главных моментов относительно одного и того же центра.  [c.70]

Число обпщх теорем в случае системы равно четырем, тогда как в случае точки их три. Четвертая теорема - о движении центра масс - только по форме отличается от теоремы об изменении количества движения. Две другие теоремы те же, что и в случае точки об изменении кинетической энергии и об изменении момента количества движения.  [c.136]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]


Смотреть страницы где упоминается термин Теорема об изменении кинетического момента и кинетической энергии системы : [c.145]    [c.179]    [c.14]    [c.366]   
Смотреть главы в:

Курс теоретической механики. Т.2  -> Теорема об изменении кинетического момента и кинетической энергии системы



ПОИСК



Закон изменения импульса системы. Закон изменения момента импульса систеЗакон изменения кинетической энергии. Потенциальная энергия взаимодействия частиц Закон сохранения полной энергии. Уравнение Мещерского. Теорема вириала Движение свободной частицы во внешнем поле

Кинетическая системы

Кинетическая энергия системы

Кинетическая энергия—см. Энергия

Момент кинетический

Момент кинетический системы

Момент системы сил

Теорема кинетических моментов

Теорема моментов

Теорема о кинетической кинетической энергии

Теорема о кинетической энергии

Теорема о кинетической энергии системы

Теорема о кинетическом моменте систем

Теорема об изменении кинетического

Теорема об изменении кинетического момент

Теорема об изменении кинетического момента системы

Теорема об изменении кинетической энергии

Теорема об изменении кинетической энергии системы

Теорема об изменении энергии

Теорема системы

Теоремы об изменении импульса, механического момента и кинетической энергии относительно произвольных неинерциальных систем отсчета

Энергия Теорема

Энергия изменения

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия системы



© 2025 Mash-xxl.info Реклама на сайте