Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердые штамповка

Под методом штамповки подразумевают общий принцип построения процесса, основанный на выборе веда среды рабочих частей штампов - твердой, газообразной, смешанной.  [c.22]

В зависимости от физического состояния, технологических свойств и других факторов все способы переработки пластмасс в детали наиболее целесообразно разбить на следующие основные группы переработка в вязкотекучем состоянии (прессованием, литьем под давлением, выдавливанием и др.) переработка в высокоэластичном состоянии (пневмо- и вакуум-формовкой, штамповкой и др.) получение деталей из жидких пластмасс различными способами формообразования переработка в твердом состоянии разделительной штамповкой и обработкой резанием получение неразъемных соединений сваркой, склеиванием и др. различные способы переработки (спекание, напыление и др.).  [c.429]


Новый способ упрочнения - гидростатическое прессование (объемная штамповка, экструзия) металла при сверхвысоком давлении. В условиях всестороннего сжатия при таких давлениях резко повышается пластичность даже самые твердые и хрупкие материалы (интерметаллиды, карбиды, бориды, керамика) приходят в состояние текучести и легко заполняют формы. В процессе обжатия происходит повышение прочности и вязкости, которое не теряется и при последующем отжиге металла. Так, например, прочность молибденовых сплавов увеличивается в 2 — 3 раза, вязкость в 15 — 20 раз, пластичность в 10 раз. Гидростатическое прессование используется и как способ упрочнения, и как способ точной обработки наиболее труднодеформируемых материалов.  [c.178]

Для тонкослойных покрытий, в частности в автомобилях, применяют баббит СОС 6-6 (88 % свинца, 6 % олова и 6% сурьмы). Предусматривается металлокерамический подслой, спеченный из порошка с 40 % никеля и 60 % меди на стальной основе. При этом обеспечивается хорошее сцепление слоев, так как металлокерамический подслой пропитывается баббитом, образуя с ним сильно увеличенную поверхность сцепления подслой также диффундирует в стальную основу. Этот баббит имеет повышенное сопротивление усталости, обеспечивает в связи с отсутствием твердых составляющих малый износ цапф и допускает высокопроизводительную технологию изготовления вкладышей (штамповкой из ленты).  [c.378]

Термомеханическая предыстория материала может, по-видимому, оказывать существенное влияние и на стойкость к водородному охрупчиванию других суперсплавов [38, 118, 279, 287]. В качестве примера на рис. 42 показано влияние термообработки на листовой сплав Рене 41 [279] при термическом наводороживании в течение 1000 ч при температуре 650°С и давлении 1 атм. Необходимо отметить отрицательный эффект старения, приводящего к образованию у, а также охлаждения в печи от температуры обработки на твердый раствор (вероятно, путем образования г] на границах зерен, о чем свидетельствует межкристаллитный характер водородного разрушения [279]). В другом исследовании был обнаружен небольшой положительный эффект высокоэнергетической штамповки сплава Инконель 718 перед старением по сравнению с обычным материалом, состаренным после термообработки на твердый раствор уменьшение относительного сужения в результате выдержки в водороде при давлении 69 МПа снизилось от 72% при обычном старении до 60% в материале, подвергнутом термомеханической обработке (ТМО). Таким образом, образование у или у" после ТМО ухудшает свойства исследованных сплавов практически в такой же степени, как и в отсутствие ТМО. По-видимому, для упрочнения и повышения стойкости к KP решающее значение имеет улучшение субструктуры сплава при старении, предшествующем ТМО [160, 289]. Не исключено, что более сложные процессы обработки, включающие ТМО, позволяют добиться улучшения свойств никелевых сплавов.  [c.116]


Штамповка и специальная прокатка при комнатной температуре могут создавать на обрабатываемых деталях остаточные поверхностные напряжения в поперечном направлении. Если сплавы поддаются горячей обработке, то детали сначала отжигают до состояния о и затем подвергают горячей обработке. Сплавы 2020, 2024 и 2219 могут быть штампованы в горячем виде в состоянии после обработки на твердый раствор и затем состарены до состояния максимального сопротивления КР, однако этот процесс не рекомендуется для сплава 2014 и сплавов серии 7000, состаренных до состояния Тб.  [c.301]

Общим для всех марок стали и сплавов является стремление производить их ковку и штамповку в однофазном состоянии, обеспечивающем их большую гомогенность при минимальном образовании внутренних напряжений. В крупных слитках углеродистой и низколегированной стали составляющие сплава обычно успевают достаточно полно перейти в твердый раствор за время выдержки, необходимой для выравнивания температуры по сечению.  [c.26]

Жаропрочные сплавы с карбидным или интерметаллидным упрочнением наиболее высокую пластичность получают после закалки с высоких температур и быстрого охлаждения (без старения). В этом состоянии они выдерживают относительно более глубокую штамповку, гибку и прокатку, приобретая повышенную твердость и прочность в результате наклепа. В зависимости от назначения после холодной обработки давлением их подвергают старению или полной термической обработке, состоящей из закалки на твердый раствор и двойного или одинарного старения.  [c.230]

Эбонит (полисульфид каучука) — продукт вулканизации каучука с большим количеством серы (до 60%) — твердое вещество с плотностью 1,1 — 1,25г/сл пределом прочности при растяжении 300—600 кГ см при относительном удлинении 1—4%. При повышении температуры до 65—100° С он переходит в пластичное состояние, позволяющее осуществлять штамповку. Эбонит хорошо обрабатывается точением, фрезерованием и т. д. Эбонит широко используют в качестве электротехнических деталей благодаря высоким диэлектрическим свойствам. Для этой цели выпускают (ГОСТ 2748—53) поделочный эбонит марок А и Б в виде листов от 0,5 до 32 мм круглых прутков диаметром от 5 до 75 мм и трубок с внутренним диаметром от 3 до 50 мм с толщиной стенок от 1 мм (для малых диаметров) до 20 мм (для больших диаметров). Из эбонита изготовляют моноблоки для аккумуляторов (ГОСТы 6980—54, 9298—59 и различные ТУ) и детали для них, стойкие к кислоте. В кислотах, щелочах, органических растворителях эбонит практически не растворяется, лишь набухает в бензоле, сероуглероде и других растворителях, поэтому его применяют в химическом маши построении в качестве стойких к агрессивным средам деталей, труб, сосудов, насосов и т. д.  [c.246]

Высокоэнергетические импульсные методы листовой штамповки. При гидровзрывной штамповке энергия взрыва передается заготовке через ударную волну и движение гидропотока. Передающей средой может быть жидкость, сыпучая, вязкая или твердая среда. Деформируемые листовые или трубчатые заготовки можно подвергать пробивке, вытя кке, рельефной формовке, раздаче, обжиму, отбортовке и др. (рис. 47). Возможно также формообразование при нагреве заготовки передающей средой (песком). Для взрыва используют бризантные и метательные взрывчатые вещества. Взрыв можно производить в стационарном или съемном (разовом) бассейне. Для формообразования используют один инструмент — матрицу или пуансон для вытяжки и рельефной формовки — матрицу для обжима — пуансон.  [c.166]

Метод непригоден для изготовления деталей, элементы которых должны иметь различную толщину. Однако при комбинировании холодной штамповки со сваркой или пайкой твердыми при-  [c.83]

При штамповке из жидкого металла в отличие от объемной штамповки не требуется затрачивать мощность пресса на перемещение твердого металла для заполнения фигуры штампа. Прессование начинается, когда металл находится в жидкой и полужидкой фазах и заканчивается в момент полной кристаллизации, при сравнительно высокой температуре заготовки и достаточной пластичности металла. Удельное давление прессования может быть значительно меньше, чем для объемной штамповки. Усилие пресса при штамповке из жидкого металла в 10—15 раз меньше, чем при объемной штамповке. Это позволяет на маломощных прессах получать значительные по объему и габаритам заготовки.  [c.256]


F 1/06 системы управления С 17/12 сцепки G 5/02 тележки ходовой части F 3/00, 5/00) заправка твердым топливом В 65 G 67/18 изготовление конструктивных элементов ковкой или штамповкой В 21 К 7/12-7/14 мостовые краны для их подъема В 66 С 17/22 F 01 ( привод локомотивов с использованием (машин или двигателей В 23/02 (паросиловых К 3/10 силовых К 15/02) установок турбомашин D 15/02>> устройство для отвода дымовых газов F 23 J 11/04-11/06] Лонжероны крыльев 3/18 фюзеляжей 1/06) самолетов и т. п. В 64 С Лопасти воздушных винтов <В 64 С 11/16-11/28 деревянные, изготовление (В 27 М 3/10 прокаткой В 21 Н 7/10)>  [c.107]

При изготовлении деталей (штамповка, вытяжка, прокатка, гибка, резание, шлифовка) применяются различные смазки, пасты, эмульсии, растворы и т, п., которые загрязняют их поверхность. При механической обработке пыль, вода и твердые частицы из окружающего воздуха адсорбируются на поверхности деталей. Загрязнение деталей может происходить при прикосновении к ним рук работающих, при химической и термической обработке их (загрязнение технологическими средами), а также в процессе их транспортировки и хранения.  [c.179]

При большой окружной скорости (более 25...30 м/с) илп при работе с ударами, толчками, вибрацией корпусные детали полу-муфт и другие нагруженные детали выполняют из стали (отливки, прокат, штамповка, ковка). При меньших окружных скоростях применяют чугун (СЧ 21-40, СЧ 32-52, СЧ 35—56). Мелкие детали выполняются из конструкционных углеродистых сталей (прокат), а крупные ответственные детали — из поковок (сталь 40, 40ХН и др.). Рабочие поверхности трения подвергают термической обработке с целью повышения твердости и износостойкости. Упругие элементы изготавливают из пружинной стали, пластмасс, твердой резины. Поверхности трения сцепных муфт могут облицовываться фрикционными материалами (см. табл. 15.4).  [c.375]

Назначение молотовые штампы паровоздушных и пневматических моло тов с массой падающих частей до 3 т, ковочные штампы для горячей штамповки, валки крупных, средних и мелкосортных станов для прокатки твердого ме талла.  [c.400]

В теории пластичности изучаются законы, связывающие напряжения с упругопластическими деформациями, и разрабатываются методы решения задач о равновесии и движении деформируемых твердых тел. Теория пластичности, являющаяся основой современных расчетов конструкций, технологических процессов човки, прокатки, штамповки и других, а также природных процессов (например, горообразования), позволяет выявить прочностные и деформационные ресурсы материалов. Пластические деформации до разрушения достигают значений  [c.250]

Различают упругое, упругопластичное и вязкопластичное твер дые тела. Упругим телом называют такое, которое после снятия внешней нагрузки восстанавливает свои размеры, и форму, существовавшие до нагружения. Упругопластичное тело воссзанавлн-вает их неполностью. В этом случае после снятия нагрузки остается так называемая остаточная деформация, т. е. тело оказывается частично измененным. Иногда образование остаточной деформации является целью технологической операции по приданию телу необходимой формы (таковы холодная штамповка, гибка, протяжка и т. д.). При вязкопластичном состоянии вещество ведет себя как твердое тело в отношении очень кратковременных нагрузок и, напротив, как вязкая жидкость в отношении длительных. Примером вязкопластичного течения может служить движение ледника, спускающегося с гор.  [c.93]

Проводниковые материалы представляют собой металлы и сплавы. Металлы имеют кристаллическое строение. Однако основное свойство кристаллического тела — анизотропность — не наблюдается у металлов. В период охлаждения металла одновременно зарождается большое количество элементарных кристаллов, образуются кристаллиты (зерна), которые в своем росте вступают в соприкосновение друг с другом и приобретают неправильные очертания. Кристаллиты приближаются по своим свойствам к изотропным телам. Высокая тепло-и электропроводность металлов объясняется большой концентрацией свободных электронов, не принадлежащих отдельным атомам. При отсутствии электрического поля равновероятны все направления теплового движения электронов в металле. Под воздействием электрического поля в движении электронов появляется преимущественное направление. При этом, однако, составляющая скорости электрона вдоль этого направления в среднем невелика, благодаря рассеянию на узлах решетки, Рассеяние электронов возрастает при уведичении степени искажения решетки. Даже незначительное содержание примесей, таких как марганец, кремний, вызывает сильное снижение проводимости меди. Другой причиной снижения проводимости металла или сплава может явиться наклеп— т. е. волочение, штамповка и т. п. Твердотянутая проволока имеет более низкую проводимость, чем мягкая, отожженная. При отжиге происходит рекристаллизация металла, сопровождающаяся повышением проводимости. Ее величина приближается к первоначальной благодаря восстановлению правильной формы кристаллической решетки. Во многих случаях желательно получение проводникового материала с низкой проводимостью такими свойствами обладают сплавы — твердые растворы двух типов. Твердыми растворами замещения называют такие, в которых атомы одного из компонентов сплава замещают в кристаллической решетке второго компонента часть его атомов. В твердых растворах внедрения атомы одного из компонентов сплава размещаются в пространстве между атомами второго, расположенными в узлах кристаллической решетки. Если атомы первого и второго компонентов сплава близки по размерам и строению электронных оболочек  [c.272]


Твердые сплавы, широко применяемые в промышленности в виде режущих и формоизменяющих инструментов, подвергаются разнообразным механическим и термическим переменным нагрузкам. Достаточно указать на реншм прерывистого резания при токарной обработке, на фрезерование, глубокую вытяжку, прессование и штамповку с помощью твердосплавных инструментов. Оптимальное использование соответствующих инструментов требует знания с достаточно высокой точностью характеристик усталостной прочности описанных сплавов [1]. Вследствие хрупкости твердых сплавов при построении кривых Велера необходимо испытывать большое количество образцов, что приводит к повышенному расходу материала и увеличению времени испытаний. В настоящей работе впервые представлены результаты исследований по распространению усталост-  [c.258]

Вначале под эффектом Ребиндера понимали собственно уменьшение прочности и облегчение деформации при сниже1ши уровня поверхностной энергии вследствие явления адсорбций. В последнее время представление об этом эффекте существенно расширилось, Было доказано, что уровень поверхностной энергии снижается не только вследствие адсорбции, но и в результате внешней поляризации. Эффект Ребиндера объясняет явления трения и изнашивания, фреттинг-коррозии, причины разрушений в средах, открывает путь к созданию материалов с заранее заданными свойствами, а также используется при усовершенствовании процессов протяжки, штамповки и диспергирова1шя твердых тел.  [c.27]

Обработка металлов давлением включает группу TexH0JK)FH4e-ских процессов, таких как прокатка, прессование, волочение, ковка, штамповка, в результате воздействия которых на металлическую заготовку изменяется ее форма в результате пластической деформации. Источником деформирующей силы в процессе обработки металлов давлением является энергия, создаваемая в прокатных и волочильных станах, прессах, молотах и т. д. Деформирующие силы передаются на заготовку инструментом, который обычно является твердым, испытывающим малые упругие деформации при пластической деформации заготовки. Основные факторы, свидетельствующие о персиективности применения процессов обработки давлением для изготовления композиционных материалов, приведены ниже.  [c.144]

Электроимпульсная обработка штампов для горячей штамповки шатунов, кулаков, вилок, крестовин и других деталей — весьма распространенная операция. По сравнению с фрезерованием она позволяет снизить трудоемкость в 1,5—2 раза, во столько же раз уменьшить объем последующей слесарно-механической обработки. Во многих случаях целесообразно до термической обработки производить предварительное фрезерование полости штампа или пресс-формы, а после термической обработки доводить электроэрозионным способом. Большие возможности данного способа обработки позволили во многих случаях перейти на изготовление штампов и пресс-форм из твердых сплавов, отличающихся большой износостойкостью. Этому способствовало повышение механических свойств самих сплавов. Обработка штампов, как и других твердосплавных деталей, производится на электроимпульсных станках (например, 4Б722 и 4723), с последующей абразивной или ультразвуковой доводкой. Режим обработки принимают сравнительно мягким при работе на машинных генераторах импульсов ток берут равным 30—50 А, съем при этом составляет 120—220 мм /мин при скорости углубления электрода 0,2—0,5 мм/мин. При более интенсивных режимах на поверхности образуются микротрещины и приходится оставлять значительный припуск на последующую механическую обработку. Если станок имеет высокочастотный генератор импульсов, то припуск на доводку может быть уменьшен до нескольких сотых миллиметра.  [c.156]

Увеличилась толпшна листового материала, применяемого для ковки и горячей штамповки крупных пустотелых деталей — барабанов, котлов. Рост объема изготовления тонкого листа холодной прокатки повлиял на технологию холодной листовой штамповки крупных автомобильных и других деталей маишностр сения. Выпуск тонкой стальной ленты, однако, далеко не соответствовал запросам штамповочного производства и тормозил качестБенкое совершенствование технологии листовой штамповки. К этому надо добавить, что дефицитность некоторых материалов, в частности молибдена, значительно затрудняла решение задачи повышения стойкости штампов для горячей штамповки на молотах и прессах. За время первых пятилеток возросло применение для штампов твердых сплавов в виде наплавок и отдельных вставок с целью повышения их стойкости. Нагрев металла для ковки, несмотря на некоторое улучшение, не достиг того состояния, которое можно было бы признать соответствующим уровню техники. В кузнечных цехах свободной ковки продолжали применяться два основных  [c.108]

За последнее время промышленное применение нахо- о дит непосредственное преобразование электрической энергии в механическую с помощью импульсов, возникающих при высоковольтном разряде в жидкостях. При кратковременном и мощном электрическом разряде в жидкости образуется плазменный канал, создающий механические импульсы (вблизи канала они достигают многих сотен атмосфер), и происходит распространение ударных волн. Преобразование электрической энергии в механическую идет непосредственно, минуя какие-либо промел<уточные ступени. Такой электрогидравлический эффект (ЭГЭ) нашел применение в промышленности (штамповка деталей, дробление твердых материалов и др.). Исследовательские работы, проводимые в Советском Союзе и за рубежом, подтвердили целесообразность и перспективность применения электрогидравли-ческоь технологии и в сельскохозяйственном пропзвод-  [c.152]

Комоль Ре—Со—Мо Магнитно изотропен. Пластичен в нагретом состоянии, хрупок в холодном. Выпускается в виде горячекатаных прутков н листов. Изделия изготовляют горячими видами обработки (ковка, штамповка, резка, осадка и гибка), В холодном состоянии допускает только обработку резанием. Нуждается в отпуске для дисперсионного твердения, в результате которого улучшаются магнитные свойства. После отпуска тверд и хрупок  [c.111]

Вако (викаллой) Ке-У-Со При содержании до 12 % V изотропен. Пластичен в горячем и холодном состоянии. Изделия изготовляют методами холодной обработки (резание, штамповка, гибка и ковка). Окончательные магнитные свойства не зависят от степени деформации и достигаются в результате отпуска для дисперсионного твердения. После отпуска тверд н хрупок При содержании свыше 12 % V анизотропен. Пластичен в горячем и холодном состоянии. Выпускается в виде очень тонкой холоднокатаной ленты и холоднотянутой проволоки со степенью обжатия свыше 95 %. Окончательные магнитные свойства зависят от степени деформации и достигаются в результате отпуска для дисперсионного твердения. После отпуска тверд и хрупок, но механические свойства тонких лент и проволок такие же, как у высокопрочной стали. Магнитные свойства у проволок выше, чем у лент  [c.111]

Статья сигнализировала о положении дел в отечественном кузнечном производстве. В частности, она указывала на то, что 1) кузнечно-штамновочное дело развивается у нас пока стихийно, без определенного плана (в контрольных цифрах — поковки и штамповки не представлены) 2) вопрос о постройке центрекузов разрешается слишком медленно 3) нет единого центра, ведающего вопросами кузнечно-штамповочного дела 4) не поставлено на твердую почву производство кузнечнопрессового оборудования в СССР 5) хромает организация кузнечно-штамповочного дела на предприятиях 6) научно-исследовательские и рационализаторские организации не могут в полном объеме развернуть работу из-за отсутствия собственной экспериментальной базы (кузнечный отдел НИИМАШа), отсутствия средств и кадров (кузнечная контора Оргметалла ) и т. д. 7) кузнечная общественность недостаточно организована (кузнечная комиссия при клубе им. Дзержинского никак не может превратиться в НТО и т. д.).  [c.37]


Рекристаллизационный отжиг применяется для деформированной в холодном состоянии (наклепанной, нагарто-ванной) стали (холодноштампованные изделия, холоднокатанные лист и лента, холоднотянутые прутки и проволока), которая благодаря наклепу становится прочной и твердой при понижении ее пластичности (табл. 4) целью этого отжига является восстановление исходных свойств стали — понижение твердости, восстановление пластичности и вязкости при некотором понижении прочности (табл. 5), получение равноосных неде-формироваиных зерен, снятие внутренних напряжений и улучшение деформируемости при последующей холодной обработке — волочении, штамповке, прокатке.  [c.668]

Этот способ позволяет осуществлять местный или общий иагрсз любых токопроводящих материалов на любую заданную глубину с большой скоростью, без окисления поверхностей. Среди выполняемых по этому способу операций поверхностная закалка, сквозной нагрен под штамповку, панка твердыми припоями без флюсов, безокислитель-иый отжиг.  [c.960]

Иное явление при штамповке из жидкого металла. Залитый в полость прессформы металл плотно прижимается к твердым стенкам прессформы и деформация протекает при всестороннем сжатии, без существенных растягивающих усилий. Таким образом напряжения, возникающие в металле, являются напряжениями сжа-  [c.250]

Двигатели [внутреннего сгорания [F 02 свободнопоршневые В 71/00-71/06 со сжатием (воздуха В 3/00-3/12 горючей смеси В 1/00-1/14) на твердом топливе В 45/00-45/10 устройства для ручного управления D 11/00-11/10 с устройствами для продувки или заполнения цилиндров В 25/00-25/08) G 01 индикаторных диаграмм 23/32 датчики давления, комбинированные с системой зажигания двигателей 23/32 индикация (относительного расположения поршней и кривошипов 23/30 перебоев в работе 23/22 работы или мощности 23/00-23/32)) измерение расхода жидкого топлива F 9/00-9/02 испытание (М 15/00 деталей М 13/00-13/04)) F 01 <диафрагменные В 19/02 с использованием особого рабочего тела К 25/00-25/14) изготовление для них ковкой или штамповкой В 21 К 1/22 использование теплоты отходящих газов (F 02 G 5/00-5/04 холодильных машин F 25 В 27/02) комбинированные с электрическим генератором Н 02 К 7/18 работа в компрессорном режиме F 04 В 41/04 на транспортных средствах В 60 К 5/00-5/12] (гравитационные 3/00-3/08 инерционные механические 7/00, 7/04-7/10) F 03 G для грейферов В 66 С 3/14-3/18 изготовление деталей В 21 D 53/84 многократного расширения в паросиловых установках F 01 К 1102-7104 объемного вытеснения F 01 В (агрегатирование с нагрузкой 23/00-23/12 атмосферные 29/02 комбинированные с другими машинами 21/00-21/04 конструктивные элементы 31/00-31/36 предохранительные устройства 25/16-25/18 преобразуемые 29/04-29/06 пуск 27/00-27/08 расположение и модификация распределительных клапанов 25/10 регулирование 25/00-25/14 сигнальные устройства 25/26) работающие на горючих газах F 02 G 1/00-1/06 рас-пределителыше механизмы F 01 L 1/00-13/08 для пишущих машин В 41 1 29/38 пневматические в избирательных переключателях Н 01 Н 63/30  [c.72]

Плунжерные ( головки в прессах для обработки прессы для производства фасонных изделий из) керамических материалов В 28 В 3/02-3/10 насосы F 04 В обсадочные машины для разделения твердых материалов В 03 В 5/14) Плунжеры ( изготовление ковкой или штамповкой В 21 К 1/18 использование при производстве (изделий из пластических материалов В 29 С 45/02, 45/53-45/54 листового металла В 21 С 26/00) для прессов В 30 В 15/06 для экструзионного формования пластических материалов В 29 С 47/54)  [c.137]

А. Нарезание внутренней резьбы метчиками и наружной — плашкой накатывание резьб нарезание резьб резцом на токарно-винторезном станке резьбо-шлифование и др. Б. Зуборезные долбяки (дисковые и реечные) зуборезные головки шеверы (дисковые и червячные) резцы зубострогальные и др. В. Закалка ТВЧ, покрытие интридом титана на установке Булат , напыление твердым сплавом электроискровым способом и др. Г. Подшипники скольжения (сталь-1-+бронза), сверла, фрезы и т. п. (конструкционная сталь-Ьбыстрорежущая), сталь с антикоррозийным покрытием (алюминие.м, оловом и т. п.), ответственные злектроконтактирующие изделия (латунь-f серебро) н др. Д. Твердые сплавы, быстрорежущая сталь, алмазы (природные и синтетические), нитрид бора (эльбор, гексанит и прочие сверхтвердые композиты) и др. Е. Сверление, зенкерованне, развертывание, внутреннее шлифование, пробивка штамповкой и др.  [c.171]

Кремний, остающийся после раскисления в твердом растворе (в феррите), сильно повышает предел текучести От- Это снижает способность стали к вытяжке и особенно к холодной высадке. В связи с этим в сталях, предназначенных для холодной штамповки и холодной высадки, содержание кремния до.тжно быть сниженным.  [c.132]

Штамповку деталей из этих сплавов из-за большой опасности возникновения мелких трещин производить не рекомендуется. Ковар хорошо куется, прокатывается или протягивается с промежуточными отжигами в водороде при 700—1000°С. Перед отжигом детали тщательно обезжириваются трихлорэтиленом. При протяжке не ре-гкомендуется использовать смазки, содержащие графит. Жесть из ковара пригодна для глубокой вытяжки при изготовлении цилиндров, колпачков и др. Ковар хорошо паяется мягкими припоями, хуже — твердыми.  [c.76]

Тунгстен, как его называют в Америке, известный в Европе под названием вольфрам ,— металл с уникальными свойствами, благодаря которым его применяют при обработке резанием и штамповке других металлов, а также в условиях высоких температур. Он имеет самую высокую температуру плавления (3410°) и самое низкое давление пара среди остальных металлов. Вольфрамовая проволока имеет самый высокий предел прочности при растяжении и предел текучести до 420 кг1мм . Вольфрам — один из наиболее корроэионностойких материалов. По плотности он уступает лишь металлам платиновой группы и рению. После соответствующей обработки этот Металл становится упругим и пластичным. Его соединение с углеродом — самое твердое из известных веществ, содержащих металл.  [c.136]

Кроме перечисленных выше в патентной литературе приводится большое число различных составов для холодной обработки давлением. Так, например, для холодной штамповки легких металлов — раствор мыла с оливковым маслом алюминия — стеарат цинка алюминиевых сплавов и меди — раствор ланолина в трихлорэтилене цинка— растительное масло, розмариновое масло, графит с добавкой буры стали — порошок дисульфида молибдена. Предлагаются также смазки, армированные волокнами, например, смазка, содержащая смазочное масло, углеродное волокно, мыло и твердый смазочный материал, графит или MoSi. Загустителем служит мыло (10—50% об.). Углеродное волокно, предпочтительно длиной 0,25 см, предварительно обрабатывают HNOa н солью высшей кислоты или амина для придания ему олеофильности. В качестве смазочного масла используется поли-фениловый эфир, диэфир или силиконовая жидкость.  [c.62]

Псевдосплавы с объемной долей вольфрама до 50% получают преимущественно путем спекания смеси компонентов в твердой или жидкой фазе, а при высокой объемной доле вольфрама (>50%) - путем пропитки. Спекание производят в диапазоне температур 1273-1627К в вакууме или атмосфере водорода. Спеченные заготовки подвергают прокатке, экструзии, волочению, штамповке. Свойства псевдосплавов можно варьировать в широких пределах, изменяя состав композита. С увеличением содержания вольфрама прочностные характеристики псевдосплавов (твердость, предел текучести, предел прочности при растяжении, изгибе и сжатии) возрастают, а показатель njTa TH4H0 rn (относительное удлинение, ударная вязкость) ухудшаются. Повьш1аются удельное электросопротивление, износостойкость, электроэрозионная стойкость и переходное сопротивление.  [c.126]

Алюминиевые сплавы употребляют для изготовления монометаллических деталей (втулок, подшипников, шарниров и др.) и биметаллически подшнпннков. Псследине изготовляют штамповкой из биметаллической полосы или ленты со слоем алюминиевого сплава, соединенного со сталью в процессе совместного пластического деформирования при прокатке. Для монометаллических подшипников употребляются сравнительно твердые сплавы, а слой биметаллических вкладышей изготовляют из менее твердого пластичного металла.  [c.177]


Смотреть страницы где упоминается термин Твердые штамповка : [c.241]    [c.143]    [c.302]    [c.38]    [c.351]    [c.97]    [c.99]    [c.147]    [c.218]    [c.101]   
Ракетные двигатели (1962) -- [ c.214 , c.219 , c.233 ]



ПОИСК



Штамповка зарядов твердого топлива



© 2025 Mash-xxl.info Реклама на сайте