Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лоренца волновой

Таким образом, если ранее Е и Н рассматривали как равноправные компоненты электромагнитной волны, то при исследовании воздействия электромагнитной волны на вещество можно установить различие между ними. Это, впрочем, понятно, так как физический процесс подобного рода сводится к воздействию поля на элементарные заряды (в первую очередь свободные и связанные электроны). Такое воздействие количественно описывается формулой Лоренца f = сЕ +(e/ j[vH]. Обычно v с и второе слагаемое в формуле мало. Поэтому вектор Е и отвечает за движение электрических зарядов под действием электромагнитного поля. Тем самым подводится база под довольно неопределенное понятие светового вектора , которым часто пользуются при описании оптических явлений. Можно считать вектор Е таким световым вектором , ясно отдавая себе отчет в том, что в старой волновой теории смысл этого понятия был совсем иным.  [c.79]


В настоящей статье принято, что свет состоит по существу из световых квантов, каждый из которых обладает одной и той же чрезвычайно малой массой. Математически показано, что преобразование Лоренца—Эйнштейна совместно с квантовыми соотношениями приводит к необходимости связать движение тела и распространение волны и что это представление дает физическую интерпретацию аналитических условий устойчивости Бора. Дифракция является, по-видимому, совместимой с обобщением ньютоновской динамики. Далее, оказывается возможным сохранить как корпускулярный, так и волновой характер света и дать с помощью гипотез, подсказываемых электромагнитной теорией и принципом соответствия, правдоподобное объяснение когерентности и интерференционных полос. Наконец, показано, почему кванты должны входить в динамическую теорию газов и почему -закон Планка является предельной формой закона Максвелла для газа световых квантов.  [c.639]

В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, которые определяют преобразования волновых функций.  [c.863]

ФОРМУЛА де Бройля для любых волновых процессов определяет зависимость длины волны, связанной с движущейся частицей вещества, от массы и импульса частицы Дебая — Ланжевена служит для вычисления диэлектрической восприимчивости полярного диэлектрика Ленгмюра определяет величину термоэлектронного тока по значению анодного напряжения лампы Лоренца устанавливает зависимость результирующей силы, приложенной к движущемуся электрическому заряду в магнитном и электрическом поле Планка— для вычисления испускательной способности абсолютно  [c.292]

В двух последних лекциях речь идет главным образом о броуновском движении и флуктуациях. В последней лекции мастерски излагаются применения теории флуктуаций к выводу формулы излучения Планка. При этом подробно разбираются известные статистические свойства излучения, которые нельзя получить, исходя из волновой теории. То, что именно эти вопросы вызвали интерес у Г. А. Лоренца, особенно приятно рецензенту. Каждый физик сможет многому научиться, прочитав эту блестяще написанную книжку.  [c.9]

Концепция рассмотрения электронов как частиц была понята раньше, чем соответствующая концепция для фононов, и, хотя для понимания движения электронов необходимо знать волновые аспекты поведения, теории электро- и теплопроводностей металлов смогли уже в начале этого столетия объяснить большинство экспериментальных данных. Такие теории могут объяснять качественно закон Видемана—Франца [247] и его обобщение, данное Лоренцем [151], причем оба закона первоначально были обнаружены экспериментально..  [c.171]


Постоянный множитель с в преобразованиях Лоренца имеет смысл скорости света в вакууме. К этому заключению не трудно прийти из инвариантности вида волнового уравнения, где с — скорость света в вакууме. Согласно опытным данным скорость с не зависит от скорости движения системы отсчета и одинакова для всех систем. Такое может быть лишь в случае, если в новых переменных Х1,Х2,Хз, , связанных со старыми переменными Х1,Х2,Хз, преобразованиями Лоренца (П2.2), волновое уравнение сохраняет свой вид, а именно  [c.428]

Инвариантность фазы (и/—кг) относительно преобразований Лоренца позволяет рассматривать это выражение как скаляр ное произведение 4-векторов четырехмерного радиуса-вектора t г) и четырехмерного волнового вектора (со/с, к), пространственной компонентой которого служит трехмерный волновой вектор к, а временной — частота волны со, деленная на с. Для электромагнитной волны в вакууме к=ы/с. поэтому четырехмерныи в л овой вектор имеет нулевую инвариантную длину.  [c.411]

Частота ы и волновой вектор к характеризуют волновые свойства монохроматического излучения, а энергия е и импульс р — корпускулярные. Второе соотношение (9.48), связывающее импульс фотона с волновым вектором, неизбежно следует из первого, связывающего энергию с частотой, если обратиться к требованию равноправия всех инерциальных систем отсчета, т. е. к принципу относительности. В самом деле, энергия (деленная на постоянный множитель с) и импульс частицы образуют четырехмерный вектор (е/с, р), а частота (деленная на с) и волновой вектор образуют четырехмерный волновой вектор (ы/с, к) монохроматической волны. При переходе от одной инерциальной системы отсчета к другой пространственные и временные компоненты 4-векторов в соответствии с преобразованиями Лоренца (8.7) перемешиваются друг с другом. Фундаментальное соотношение е=йо) между временными компонентами 4-векторов (е/с, р) и (ы/с, к) будет удовлетворять требованию релятивистской инвариантности, т. е. выполняться одновременно во всех системах отсчета, тогда и только тогда, когда такое же соотношение р=Йк имеет место и между их пространственными компонентами.  [c.468]

Система осцилляторов (неподвижных, случайно распределенных в пространстве) может служить моделью газа двухатомных молекул, колебаний решетки и т. п. в особых предельных условиях. В электрическое слагаемое силы Лоренца в (17) нужно включить величину —П (х —Хо) (восстанавливающая сила), где П — собственная частота осциллятора, с последующим усреднением по положению центра осциллятора хо- В невозмущенной среде скорость равна нулю, а плотность определяется волновой функцией основного состояния осциллятора. Ответ имеет вид (см. также [5])  [c.241]

Волновые уравнения в калибровке Лоренца. В калибровке Лоренца векторный и скалярный потенциалы связаны условием  [c.293]

В калибровке Лоренца два волновые уравнения расцепляются и имеют вид 2  [c.294]

В заключение этого раздела отметим, что много потенциалов удовлетворяют условию Лоренца и в то же время приводят к идентичным электромагнитным полям. Все они связаны калибровочным потенциалом Л, который удовлетворяет волновому уравнению  [c.294]

Поскольку преобразованные потенциалы тоже должны удовлетворять условию Лоренца, то калибровочный потенциал Л должен подчиняться волновому уравнению (10.16).  [c.294]

Из уравнения (2.120) следует, что волновое уравнение (2.12) инвариантно к преобразованию Маха-Лоренца и не обнаруживает анизотропии (т.е. избирательности к выделенному направлению скорости) в своей структуре.  [c.76]

Отсюда следует, что если ф есть истинный скаляр пространства Минковского, то волновое уравнение (6.26) будет инвариантно ртносительно преобразований Лоренца,  [c.223]

Короче говоря, я развил новые идеи, которые, быть может, помогут ускорить необходимый синтез, объединяющий физику излучений, так странно разделенную в настоящее время на две области, где царят две противоположные концепции корпускулярная и волновая. Я предчувствовал, что с помощью принципов динамики материальной точки, если уметь правильно их анализировать, можно, без сомнения, выразить распространение и согласование фаз, и старался, насколько мог, вывести из этого объяснение некоторых загадок, выдвигаемых теорией квантов. Пытаясь это сделать, я пришел к некоторым интересным заключениям, которые, может быть, позволяют надеяться прийти к более полным результатам, следуя по тому же пути. Но сначала нужно было бы создать новую электромагнитную теорию, естественно, удовлетворяюшую принципу относительности, учитывающую прерывную структуру излучаемой энергии и физическую природу фазовых волн и оставляющую, наконец, теории Максвелла—Лоренца характер статистического приближения, объясняющий закономерность ее применения и точность ее предвидений в очень большом числе случаев.  [c.667]


На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]

ПРАВИЛО (Стокса длина волны фотолюминесценции обычно больше, чем длина волны возбуждающего света фаз Гиббса в гетерогенной системе, находящейся в термодинамическом равновесии, число фаз не может превышать число компонентов больше чем на два ) ПРЕОБРАЗОВАНИЯ [Галилея — уравнения классической механики, связывающие координаты и время движущейся материальной точки в движущихся друг относительно друга инерциальных системах отсчета с малой скоростью калибровочные — зависящие от координат в пространстве — времени преобразования, переводящие одну суперпозицию волновых функций частиц в другую каноническое в уравнениях Гамильтона состоит в их инвариантности по отношению к выбору обобщенных координат Лоренца описывают переход от одной инерци-альной системы отсчета к другой при любых возможных скоростях их относительного движения] ПРЕЦЕССИЯ — движение оси собственного вращения твердого тела, вращающегося около неподвижной точки, при котором эта ось описывает круговую коническую поверхность ПРИВЕДЕНИЕ системы <к двум силам всякая система действующих на абсолютно твердое тело сил, для которой произведение главного вектора на главный момент не равно нулю, приводится к динаме к дниаме (винту) — совокупность силы и пары, лежащей в плоскости, перпендикулярной к силе скользящих векторов (лемма) всякий скользящий вектор, приложенный в точке А, можно, не изменяя его действия, перенести в любую точку В, прибавив при этом пару с моментом, равным моменту вектора, приложенного в точку А скользящего вектора относительно точки В ) ПРИНЦИП (есть утверждение, оправданное практикой и применяемое без доказательства Бабине при фраунгоферовой дифракции на каком-либо экране интенсивность диафрагмированного света в любом направлении должна быть такой, как и на дополнительном экране )  [c.263]

Д.— Б, 3. ярко проявляется при рассеянии заряж. частицы на бесконечно длинном соленоиде радиуса Д (расположенного перпендикулярно движению частицы), внутри к-рого имеется магн. поток Ф и к-рый окружён непроницаемым для частиц цилиндрич. экраном радиуса Rg>R. В этом случае волновая ф-ция частицы целиком сосредоточена в области, где магн. поле отсутствует и только векторный потенциал А отличен от нуля в силу Стокса теоремы АсИ Ф (интеграл берётся по контуру L, охватывающему соленоид). Поэтому, хотя сила Лоренца на заряж. частицу не действует, амплитуда расходящейся цилиндрич. волны оказывается зависящей от потока магн. поля. Она содержит два члена, один из к-рых, описывающий рассеяние на экранирующей поверхности, исчезает в пределе Ло О Второй член, не зависящий от Ло,  [c.7]

Для эл.-магн. гармонической волны (в вакууме) В. в. А и величина к(,— <л1с (с — скорость света) объединяются в единый волновой четырёхвектор, компоненты к-рого подчиняются при переходе от одной иперциаль-ной системы отсчёта к другой (движущейся с относит, скоростью а) Лоренца преобразованием.  [c.313]

Из Паули теоремы следует теперь, что для п(ь лей целого спина, полевые функции к-рых осуществляют однозначное представление группы Лоренца, при квантовании по Бозе — Эйнштейну коммутаторы [и (z), м( /)] или [м(л ), ( (у)] пропорц. ф-ции D x—y) и исчезают вне светового конуса, в то время как для осуществляющих двузначные представления полей полуцелого сниыа то же достигается для антикоммутаторов [и(х), и у)] (или [i (a ), (у)] + ) при кваа- товании по Ферми — Дираку. Выражаемая ф-лами (6) или (7) связь между удовлетворяющими линейным ур-ниям лоренц-ковариантными ф-циями поля и или v, v и операторами л, ai рождения и уничтожения свободных частиц в стационарных квантовомеханич. состояниях есть точное магем. описание корпускулярно-волнового дуализма.  [c.302]


Квантовая механика ставит в соотвегствие каждой частице поле её волновой ф-цин, дающее распределение различных, относящихся к частице физ, величин. Концепция поля является основной для описания свойств элементарных частиц в их взаимодействий. Конечная цель в этом случае — нахождение свойств частиц из ур-ний поля и перестановочных соотношений, определяющих квантовые свойства материи. Возможный вид ур-ний поля ограничен принципами симметрии и инвариантности, являющимися обобщением эксперим. данных. Лоренц-ковариантность, напр., требует, чтобы волновые ф-ции частиц преобразовались по неприводимым представлениям группы Лоренца. Таких представлений бесконечно иного, однако только часть пз них реализована в природе и соответствует тем или иным элементарным частицам. Реально используются наиб, простые ур-вин полей, являющиеся локальными и не-ревормвруемыми. Попытки построения теорий, не удовлетворяющих этим требованиям,— нелинейной, нелокальной и т. п. теорий поля — влекут за собой пересмотр ряда важнейших принципов, существенных при физ. интерпретации теории (принцип суперпозиции, положительность нормы волновой ф-цив н т. Д.).  [c.56]

Слабая Т. J)T. волновых полей, когда из-за сильной дисперсии волновые пакеты перекрываются на. малое время и взаимодействие между волнами оказывается достаточно слабым—справедливо приближение (гипотеза) случайных фаз волн. Пример слабой Т. (в таком понимании)—волнение на поверхности моря без образования барашков. 2) Движение среды (или поля), соответствующее хаосу динамическому. При этом размерность фазового пространства динамической системы, описывающей Т. (или число независимых возбуждённых мод колебаний), прибл. glO. В простейшем случае — это низкоразмерный временной хаос (примером является Лоренца систсма). В более общем случае — низкоразмерный пространственно-временной хаос (пример—динамика дефектов в жидких кристаллах).  [c.178]

Введение четырехмерного волнового вектора удобно потому, что закон преобразования его проекций при переходе из одной инерциальной системы отсчета в другую позволяет сразу найти преобразование частоты волны и ее направления, т. е. получить релятивистские выражения для эффекта Доплера и аберрации Проекции четырехмерного волнового вектора волны в системе К (и/с, kx, ky, k ) выражаются через проекции в системе К ы /с, k x, ky, k z) по формулам преобразований Лоренца (8.7), если в них сделать замену t ti)/ , x kx, y ky, z k . Пусть в системе отсчета К направление волны образует угол 6 с осью х (рис. 8.8), частота волны равна U. Тогда k = tii/ и fe, =( u/ ) os 6, fe ,=( u/ )sin 6. fez—О Подставляя эти величины в формупы (8 7), получаем  [c.411]


Смотреть страницы где упоминается термин Лоренца волновой : [c.526]    [c.346]    [c.157]    [c.391]    [c.644]    [c.262]    [c.305]    [c.345]    [c.633]    [c.300]    [c.421]    [c.91]    [c.101]    [c.318]    [c.525]    [c.532]    [c.92]    [c.268]    [c.501]    [c.504]    [c.319]    [c.410]    [c.554]    [c.131]    [c.45]    [c.19]   
Основы оптики (2006) -- [ c.282 ]



ПОИСК



Газ Лоренца



© 2025 Mash-xxl.info Реклама на сайте