Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ферриты дефекты

Иногда мягкие пятна появляются из-за неоднородности исходной структуры, например скоплений феррита. В этих местах при нагреве до температуры закалки может сохраниться феррит или получит))СЯ аустепит с недостаточной концентрацией углерода. Естественно, что в этих местах даже при правильно проведенной закалке твердость недостаточная. Предварительная термическая обработка (нормализация), создающая более однородную структуру, устраняет этот дефект.  [c.307]


Мелкозернистые участки вдоль линий сплавления под заваренными дефектами и основной металл трубы (рис. 5.10, г) имеют феррито-перлитную структуру. Помимо измельчения структуры участки зон перегрева с мелкозернистой структурой имеют меньшую протяженность, чем при заварке дефектов в условиях нормальной температуры.  [c.315]

Углеродистые стали. Углеродистые стали занимают левую часть диаграммы состояний на рис. 1.12. Пользуясь этой диаграммой для оценки свойств отожженных, т. е. находящихся в равновесном фазовом состоянии сталей, надо помнить отличия химического состава их фаз — феррита и цементита — и металлургические дефекты, которые привносятся в них при выплавке и которые влияют на их механические и другие свойства. Марганец и кремний, попадающие в сталь из чугуна, а также вводимые в нее дополнительно при раскислении, растворяются в феррите, а марганец — в цементите. Благодаря этому при сохраняющейся пластичности несколько возрастают прочность и твердость стали (пластичность и вязкость снижаются при более высоком, чем примесное, содержании Мп и Si).  [c.29]

Основной областью применения ультразвуковой размерной обработки являются хрупкие материалы типа стекла, кварца, германия, ферритов и т. п. Часто в машиностроении ультразвуком обрабатывают твердые сплавы. Производительность и точность при этом значительно уступают электроэрозионному методу, преимуществом же является отсутствие дефектов в поверхностном слое, в частности микротрещин, и меньшая шероховатость поверхности.  [c.167]

Обезуглероживание является серьёзным дефектом при термической обработке стали. Степень обезуглероживания определяется по микроструктуре образца. Различают обезуглероживание полное — до чистого феррита и частичное — с переходным слоем к основной структуре. Промер слоя обезуглероживания производится при помощи микрометрического окуляра, микрометрического винта предметного столика микроскопа или же промером изображения, спроектированного на матовое стекло микроскопа.  [c.152]

Эрозия водой развивается преимущественно в результате разрушения менее прочных структурных составляющих (например, феррита в перлитных сталях). Наличие в металле технологических дефектов (ликвидации, микротрещин) неизбежно приводит к ускорению процесса эрозии.  [c.355]

На рис. 14 показано схематически изменение пластичности стали при высоких температурах в зависимости от соотношения в ней феррита и аустенита. Если преобладает а - фаза (феррито-аустенитные стали) или, наоборот, у - фаза (некоторые аустенитные хромоникелевые стали), то пластичность достаточно велика и горячая пластическая деформация не сопровождается образованием трещин, рванин, плен и других характерных дефектов металла. Схема не дает информации об изменениях в стали, которые могут происходить при колебаниях температуры. В частности, возможно количественное изменение в соотношении фаз. Тем не менее она позволяет установить температурно-деформационный режим пластического деформирования стали в сл) ае, когда известна температурная зависимость соотношения основных фаз. При определенном соотношении а - и у - фаз, когда количество той или другой из них превышает 20-25 % при температуре деформирования, пластичность стали уменьшается. Это может вызвать образование характерных дефектов стали, так как условия горячей пластической деформации весьма жестки.  [c.43]


Одной из причин образования подобного рода дефектов является различная сопротивляемость деформации аустенита и феррита. Значение относительного удлинения ферритной фазы при высоких температурах намного превышает 100%, в то время как для аустенитной составляющей при этих условиях оно редко достигает 60—70%.  [c.146]

В одной химической установке были обнаружены повреждения сварных трубных колен (фото 9.90). Эксплуатацию агрегата пришлось прекратить. Анализ шлифов (фото 9.91 и 9.92) показал, что между зернами металла, имеющего структуру аустенита с небольшим количеством б-феррита, проходят трещины. Они образуются в те.х местах, где возникают внутренние напряжения при сварке или при холодной правке. Таким образом дефекты сварных соединений вызваны коррозией под напряжением. Выбор более рациональной конструкции трубного колена и исключение операции последующей правки позволили получить соединения хорошего качества.  [c.272]

Анализ докладов, представленных на I Международную конференцию по ферритам (Япония, 1970 г.), показывает, какое большое внимание ведущие исследовательские центры уделяют изучению физико-химической природы процессов, происходящих на различных стадиях синтеза и в процессе длительной эксплуатации ферритовых элементов. Это обстоятельство, собственно говоря, и побудило нас написать настоящую книгу, выбрав в качестве основной темы процесс термической обработки ферритов, имеющий исключительно большое значение для формирования магнитных и электрических параметров. В зависимости от температуры и давления кислорода в окружающей среде (газовая фаза) в ферритах происходят различные физико-химические изменения, связанные с изменением валентного состояния и распределения катионов, появлением и исчезновением дефектов, образованием или разрушением однофазной кристаллической структуры.  [c.5]

Наиболее существенные изменения, происходящие при термической обработке ферритов химическая гомогенизация и аннигиляция неравновесных дефектов типа дислокаций формирование керамической структуры (для поликристаллических материалов) образование структуры с определенной концентрацией кислорода и обусловленной ею степенью дефектности кристаллической решетки перераспределение ионов по подрешеткам.  [c.8]

Концентрацию электронных дефектов в ферритах можно регулировать введением примесей. Например, при высоких температурах многие ферриты теряют кислород 2], в результате чего в ре-  [c.120]

Было обнаружено, что при высоких температурах (выше 7 рек) максимальной пластичностью обладают однофазные сплавы со структурой а-феррита. Установлено, что выше 1000° С деформация а-фазы с низким значением Ое,а в стали (1Х21Н5Т) значительно больше, чем деформация -фазы с высоким значением а s.y, а при 1200° С разница достигает шестикратной величины. Большое различие в сопротивлении деформации фаз вызывает локальные деформации и концентрацию напряжений. Напряжения достигают критической величины и приводят при горячей деформации к образованию микротрещин. Заниженное сопротивление деформации и высокая пластичность при высоких температурах объясняются большей энергией дефектов упаковки и скоростью диффузионных процессов в -твердом растворе и, следовательно, более интенсивным протеканием процессов динамической полигонизации и рекристаллизации, диффузионного переползания дислокаций как основного механизма пластической деформации при повышенных температурах.  [c.498]

Возможности выявления дефектов при резонансных методах радиодефектоскопии в полупроводниках, ферритах и диэлектриках определяются потенциальной и реальной чувствительностью. Поскольку для выделения сигнала, несущего информацию о дефекте при резонансных методах радиодефектоскопии (РМРД), нет принципиальной необходимости в пространственной локализации излучения при обнаружении дефектов (если не ставится задача определения их координат и геометрии), то РМРД позволяют выявлять существенно меньшие дефекты, чем другие радиометоды.  [c.237]

Вместе с тем одним из главных требований к надежности элементов оборудования является возможность раннего выявления дефектов. С этих позиций металл со структурой сорбита отпуска не является надежным. С позиций эффективности диагностики в целях обеспечения надежности оптимальным структурным состоянием стали 12X1МФ для паропроводных труб является феррито-сорбитная структура, состоящая из 30—40% сорбита отпуска и феррита.  [c.18]


Кривые текучести подобно кривым Б (см. рис. 2) наблюдаются у алюминия, а-железа и ферритных сталей с низким содержанием углерода, где высокая энергия дефектов упаковки феррита способствует развитию процессов по-лигонизации и невелико деформационное упрочнение.  [c.11]

При приёмке материала для пружин образцы его должны быть подвергнуты осмотру и испытаниям в соответствии с техническими условиями [33]. Серьёзного внимания заслуживает состояние поверхности заготовок для пружин (проволоки). Она должна быть гладкой, без плен, закатов, раковин, штрихов и других дефектов, видимых глазом. Недопустимо повреждение поверхности заготовок в процессе изготовления пружин [68]. Обезуглероживание поверхностного слоя отрицательно сказывается на механических вoй fвax и особенно на усталостной прочности пружин [58]. Допустимая глубина и степень обезуглероживания заготовок устанавливаются техническими условиями например, по СТ С1-332 Наркомата судостроительной промышленности, 1940, для поставляемой пружинной стали обезуглероженный слой допускается для прутков диаметром до 12 мм--толщиной до 1°/о диаметра, но не толще 0,15 мм на сторону для прутков диаметром более 12 мм — толщиной до 2% диаметра, но не толще 0.2 мм на сторону. Толщина слоя, обезуглеро-женного до чистого феррита, допускается в  [c.649]

Контроль наружных и внутренних дефектов, определение содержания феррита внешний осмотр и измерения, прогонку металлического шарика внутри труб, гамма- и рентгенографиро-вание, испытание керосином или воздухом, испытание гидравлическим давлением, цветную дефектоскопию, испытание гелиевым течеискателем после гидропробы.  [c.159]

При растопке одного из котлов ПК-41, проработавшего около 12 тыс. ч, на линии БРОУ (быстродействующей редукционно-охладительной установки) были обнаружены две сквозные трещины (рис. 6-22,а), проходящие по зоне термического влияния в месте приварки гильзы для термопары одна продольная длиной около 700 мм, другая, отходящая от нее, кольцевая. Они были расположены на вертикальном участке, изготовленном из труб диаметром 377x10 мм из стали 20. Трубопровод спроектирован на давление среды 6,5 ат и температуру 170° С. Механические свойства и химический состав металла труб соответствовали требованиям ЧМТУ 670-65, по которым были поставлены трубы. Микроструктура состоит из феррита и плотного пластинчатого перлита без следов сфероидизации. Деформации зерен феррита около трещины не отмечается, величина зерна соответствует 5—6 баллам. Трещина развивалась по зернам от внутренней поверхности трубы. Металлургических дефектов вблизи трещины не обнаружено.  [c.295]

Сварка используется для соединения элементов конструкций, имеющих самую различную толщину. При сварке тонких сечений материала мало, и если он имеет склонность к возникновению остаточных напряжений, то наблюдающиеся дефекты являются в основном дефектами сварки при сварке толстых сечений наиболее серьезными дефектами являются трещины которые непосредственно вызываются напряжением, возникающим при объемных изменениях, в частности, в зоне термического влияния. В предельном случае сварки за один проход соединение можно получить без использования присадочного металла. В последнее время максимальное сечение, которое могло быть сварено газовой сваркой, было значительно увеличено в результате разработки и внедрения электронно-лучевой сварки, которая позволяет получить локальную зону проплавления глубиной порядка нескольких сантиметров. При соответствующем материале и отсутствии газовыделения электронно-лучевая сварка является прогрессивным процессом, однако для ее осуществления необходимо либо иметь сварочную камеру, которую можно было бы вакууми-ровать, либо обеспечить вакуум в точке сварки. Хотя, в принципе желательно, чтобы сварное соединение обладало такими же свойствами, как основной металл, на практике это не всегда возможно, и поэтому во многих случаях используют сварку с присадочным металлом, который менее склонен к образованию трещин. Примерами применяемых при сварке присадочных металлов, которые отличаются по составу от основного металла, являются сталь с 2,25% Сг и 1% Мо для сварки 0,5% Сг, Мо, V сталей сталь с контролируемым содержанпем феррита для сварки аусте-нитных сталей и специальные электроды типа In o А для никелевых сплавов. Много попыток было сделано, чтобы разработать электроды для 0,5% Сг, Мо, V сталей, однако наплавленный металл этого состава имел очень низкую пластичность и, кроме того, приобретал высокое сопротивление деформации при выпадении карбида ванадия, повышающего склонность к образованию  [c.72]

ЧТО столбчатым зернам присуща слабость границ, которая не препятствует зарождению новых зерен различной ориентации, например, таких, которые появляются во время превращения аустенита в ферритной стали. Свободные от трещин швы при сварке узлов из аустенитной стали могут быть получены при изменении состава наплавленного металла так, чтобы он содержал небольшое количество феррита. Требуемые изменения состава стали и дефекты, связанные с каждой структурной областью, можно предсказать, пользуясь диаграммой Шеффлера или Делонга [3], например, такой, как показана на рис. 7.3.  [c.73]

Уже в начальной стадии формирования литых деталей и слитков наблюдаются такие дефекты, как засоры, ужимины, спаи, завороты, рубцы, плены, газовые раковины, поры, шероховатость поверхности и пр. При физико-химическом взаимодействии расплава с материалом формы и окружающей средой в контактной зоне отливки образуется поверхностный слой, отличающийся от основного металла по структуре, составу и свойствам, например обезуглероженный слой в стальных отливках, альфированный слой в титановых, окисные плены в магниевых чугунах, тонкая феррито-графитная эвтектика в эвтектических чугунах, черный излом в алюминиевых отливках и др. Этот поверхностный слой, как правило, ухудшает свойства отливок. Изучению механизма образования поверхностных дефектов и разработке мероприятий по их предупреждению посвящено огромное количество работ, в частности работы Г. Ф. Баландина, Н. Д. Дубинина, В. А. Ефимова, И. Б. Куманина, Ф. Д. Обо-ленцева, А. М. Лясса, А. А. Рыжикова, А. Н. Цибрика,  [c.7]


ЭИ811 вследствие большой скорости деформации и малого времени пребывания при высокой температуре происходит различная степень наклепа феррита и аустенита. Существующая при температурах 870—900° С (окончание прокатки) ферритная фаза наклепывается меньше, так как в ней успевают пройти процессы отдыха. В результате возникают локальные напряжения, приводящие к надрывам металла, которые идут по границам фаз (рис. 70). Устранение подобных дефектов достигается ограничением степени двух-фазностн стали и оптимальным температурным и скоростным режимами ее про-. катки.  [c.269]

Легирующие элементы оказывают влияние на электронную и дислокационную структуру металла. Замещая атомы в рещетке основы, они создают барьеры ближнего действия на пути движущихся дислокаций. От легирования зависят характер и величина межатомного взаимодействия в сплаве, что влияет на подвижность дислокаций. Так, при легировании может увеличиваться плотность дислокаций, вызванная изменением энергии дефектов упаковки (см. 1.5.3), меняется время релаксации вакансий и, как следствие, их избыточная концентрация. Значения констант диффузии и упругости, условия протекания фазовых превращений и в конечном итоге прочность твердого раствора, безусловно, связаны с легированием. Часто легирование сопровождается повьппением сопротивления твердого раствора пластической деформации, поскольку при его образовании более вероятным является множественное скольжение дислокаций по нескольким плоскостям вместо единичного. Так, легирование железа марганцем способствует образованию мартенситной структуры марганцевого феррита, повышению плотности дислокаций и.  [c.147]

Металл шва, соответствующий области А, имеет однофазную аусте-нитную структуру, весьма склонную к образованию горячих трещин кристаллизационного и подсолидусного типа. Шов со структурой А + Ф, т.е. с аустенитно-ферритной структурой, при повторных нагревах претерпевает охрупчивание в результате превращения феррита в сигма-фазу (5 - Fe а). Для швов со структурой Ф (феррит) характерен рост зерна при высоких температурах и хрупкость при нормальных. Швы со структурой М, М + А, М + Ф, М + А + Ф имеют мартенситную составляющую, вызывающую образование холодных трещин. Это осложняет обеспечение свариваемости при сварке сочетаний разнородных сталей, так как различные дефекты возникают не только в шве, но и в околошовной зоне.  [c.385]

Если сталь нагреть до температуры ниже линии GSE, полной перекристаллизации не произойдет. В доэвтектоидкои стали наряду с мелкими зернами аустенита останутся крупные зерна феррита. В заэвтектоидной стали сохранится сетка вторичного цементита. При нагреве точно до температуры на линии GSE превращение будет завершаться очень -медленно. Производительность СНИЗИТСЯ, окисление и обезуглероживание возрастут. Для обеспечения быстрого превраш,ения выгоднее нагрев на 30—50° С выше линии GSE. Дальнейший нагрев нецелесообразен, так как приводит к перерасходу топлива или электроэнергии на нагрев деталей и может вызвать интенсивный рост зерна. Такой дефект термической обработки называется перегревом. Он может быть исправлен повторным отжигом.  [c.140]

На этом участке иногда можно наблюдать пластинчатые выделения феррита — так называемую видманштеттову структуру (рис. 120). Она образуется в малоуглеродистой стали при охлаждении от температуры, значительно превышающей Асз, со скоростью 25—50 град сек. Раньше считалось, что такая структура недопу тимый дефект, что у видманштеттовой структуры низкая  [c.246]

В результате высокотемпературного термоциклирова-ния зерна феррита укрупнились. После десяти термоциклов поперечник их достигал толщины ленты (рис. 71, б). Наряду с погрубением структуры происходило и повреждение поверхности ленты. Из относительно гладкой она легко превращалась в шероховатую, а на дальних стадиях циклической термообработки приобретала вид апельсиновой корки . При исследовании поперечных и продольных сечений термоциклированных образцов обнаружили, что образование поверхностных впадин не связано с границами ферритных зерен (рис. 71, в). Во многих случаях одно ферритное зерно имело и впадины и выступы. В других случаях выступы и впадины имели поликристаллическое строение. Связь покрытия с основой в результате длительного термоциклирования обычно не нарушалась, и чаще покрытие оставалось равномерным. В местах выхода границ на межфазную поверхность углублений не обнаружено. Эти наблюдения свидетельствуют о том, что повреждение поверхности в описанных опытах является результатом макроскопически неоднородной деформации зерен и не вызвано пограничной диффузией точечных дефектов, как это предполагалось в работах [286, 2901.  [c.180]

Образование перлита, содержащего пластинки цементита и феррита, связано с увеличением объема (по сравнению с объемом аустенита), поэтому оставшиеся зоны аустёнита подвергаются давлению и возникающие вследствие этого напряжения вызывают дефекты в решетке аустенита и тем способствуют образованию новых пластинок цементита, а следовательно, и феррита, но уже с другой ориентацией (фиг. 123, б). Этот процесс повторяется до тех пор, пока аустенит полностью не превратится в перлит.  [c.197]

Таким образом, дефекты оказывают различное влияние на устойчивость аустенита в меж- и субкритической областях температур. В межкри-тическом интервале они стабилизируют аустенит, замедляя процесс вьще-ления феррита, в субкритической области (в области перлитного превращения), напротив, ускоряют распад 7-фазы.  [c.58]

Можно высказать следующие предположения относительно отмеченного эффекта. Известно, что в кристалле с равномерно распределенным растворенным элементом при наличии дислокаций возникает поток атомов этого элемента по направлению к дислокационным линиям, вследствие чего вокруг дислокаций создаются коттрелловские облака . Поскольку аустенит может наследовать дефекты деформированной а-фазы, можно ожидать образования на них сегрегаций углерода. Б межкритичес-ком интервале наличие таких сегрегаций должно затруднять процесс выделения феррита. Это связано с тем, что в присутствии дислокаций образование зародышей новой фазы преимущественно происходит именно на них [ 54]. Однако выделение малоуглеродистой а-фазы на дислокациях, обогащенных углеродом, естественно, затрудняется. Длительное сохранение неравновесного соотношения феррита и аустенита можно объяснить смещением кривых фазового равновесия при наличии несовершенств кристаллического строения за счет повышения термодинамического потенциала фаз и реализации в связи с этим квазиравновесных состояний.  [c.58]

Кинетика образования аустенита в звтектоидном интервале существенно зависит от исходной структуры. На рис. 39 приведены кривые аустенитизации чугуна с разным исходным состоянием, полученные методами количественной металлографии при скоросги нагрева около 100 С/мин. Из рисунка видно, что состояния А и В характеризуются большим инкубационным периодом и медленным развитием превращения. В образцах же серии Б образование аустенита начинается уже в процессе нагрева до температуры изотермической выдержки и протекает намного быстрее. При всех температурах эвтектоидного интервала (765 - 860°С) в этих образцах фиксируется гораздо больше аустенита, чем для состояний А и В. Такое различие в кинетике образования аустенита объясняется большей протяженностью границ зерен феррита в структуре Б и повышенным количеством дефектов кристаллического строения, сохранившихся после закалки. Роль же мелких графитных включений, как источников углерода, количество которых одинаково в образцах серий Б и В, оказывается несущественной.  [c.79]

Сульфидное коррозионное растрескивание под напряжением, наблюдающееся как для низкопрочных сталей с феррито-перлит-ной структурой, так и для высокопрочных сталей с сорбитной структурой, также обусловлено проникающим в сталь водородом, скапливающимся в местах трехосного напряженного состояния — границы зерен, карбидные и сульфидные частицы и др. В этих местах водррод понижает предельную величину межатомных сил сцепления и тем самым способствует образованию микротрещин и последующему формированию магистральной трещины [2.18, 2.19]. Трещина в данном случае распространяется перпендикулярно относительно направления приложенного напряжения. Процесс разрушения может усиливаться за счет дефектов структуры материала (скопления дислокаций, неравномерное распределение карбидных частиц и др.).  [c.153]


С. 3. Бокштейн [10] считает, что эффект ускорения диффузии углерода по границам зерен феррита связан с малой растворимостью его в лселезе и высокой плотностью дефектов иа границе. Чем ниже температура насыщения, тем больше разница в >гр и >об-  [c.290]

Структура слоя должна состоять из мартенсита п некоторого количества оста-точЕюго аустенита структура сердцевины — из верхнего бейнита или троостосор-бита. Концентрация углерода на поверхности в первом слое толщиной 0,1 мм — 0,7—0,9%, азота — 0,3—0,5%. При контроле микроструктуры слоя определяется наличие дефектов сетки цементита, избыточных скоплений карбидов, троостит-гой сетки, обусловленной процессом внутреннего окисления, темной составля.ющей в иитроцементованпом слое, чрезмерно повышенного количества остаточного аустенита, наличие феррита в сердцевине.  [c.318]

Наши исследования [68], а также исследования А. В. Рябченкова [132] показали, что накатка роликами или дробеструйный наклеп могут устранить понижение выносливости при действии коррозионноактивных сред (при базе исследования N = 2-10 циклов), и даже усталостная прочность стальных деталей в этих случаях может оказаться большей, чем усталостная прочность ненаклепанных деталей в воздухе. Это объясняется уплотнением поверхностного слоя и закрытием (завальцовыванием) путей для проникновения активных сред внутрь металлов через дефекты поверхности, а также возникновением при наклепе благоприятно действующих остаточных напряжений сжатия. Повышению выносливости стали в активных средах в результате наклепа поверхности способствует также замазывание дефектов поверхности ферритом, который течет по поверхности стали при ее пластической деформации.  [c.134]

Свойства ферритов, как и любых других твердофазных материалов, можно разделить на две группы объемные, или структурнонечувствительные, и структурно-чувствительные. Объемные свойства определяются химическим составом и типом кристаллической структуры феррита, а структурно-чувствительные — несовершенством (дефектами) электронной и кристаллической структуры. К первой категории относят константу кристаллографической анизотропии, магнитострикцию, точку Кюри, удельную теплоемкость, диэлектрическую проницаемость, намагниченность насыщения и т. д. В качестве примера структурно-чувствительных свойств рассматривают электропроводность, теплопроводность, форму петли гистерезиса, прочность и др. Однако указанное деление весьма условно, поскольку трудно указать такое свойство, которое бы абсолютно не зависело от степени или несовершенства электронной и кристаллической структур з1 ферритов. Действительно, константа кристаллографической анизотропии Ki постоянна для моноферритов фиксированного состава [1]. Для твердых растворов ферритов величина Ki сильно зависит от несовершенств, какими являются флуктуации химического состава в объеме материала. Эта зависимость должна особенно отчетливо проявиться у кобальтсодержащих ферритов. Теплоемкость при температурах, близких к температуре фазового превращения (точка Кюри — у феррошпинелей, точка компенсации — у ферритов со структурой граната), становится настолько чувствительной к химическим неоднородностям материала, что может служить характеристикой последней [2].  [c.7]

Изменение состава газовой фазы. Ферриты Ме М у Рез-х-у O44.Y, подобно другим фазам переменного состава, содержащим кислород, сохраняют стехиометрию (Ме 0 = 3 4) лишь при определенном парциальном давлении кислорода ро, которое является функцией температуры и величин хну. Любое изменение состава газовой фазы (pQ po стех) приводит к отклонению состава феррита от стехиометрического и значительно увеличивает концентрацию точечных дефектов, в том числе и катионных вакансий. Взаимосвязь между давлением кислорода и дефектностью кристаллической решетки ферритов рассмотрена в гл. П. Из опыта Шмальцрида [202] следует, что при увеличении давления кислорода над стехиометрическим магнетитом коэффициент диффузии железа возрастает в 150 раз. Изменение состава газовой фазы в сторону уменьшения парциального давления кислорода может привести к разрушению шпинельной структуры с образованием высокодефектной вюститной фазы, значительно активизирующей процесс спекания. Картер [203] предложил использовать этот эффект, чтобы получить беспористую магнитную керамику, окисляя немагнитную фазу в шпинель после завершения процессов спекания. Трудно сказать, чем обусловлено активирующее действие вюститной фазы возможно, что оно связано с очень высокой концентрацией катионных вакансий [204] и большой подвижностью ионов в вюстите [205]. Однако не исключено, что образующаяся вюститная фаза активизирует шпинель, искажая ее кристаллическую решетку (этого можно ожидать, исходя из принципа ориентационного соответствия Данкова—Конобеевского [206]).  [c.32]

Формирование твердых фаз в неравновесных условиях. Порошки окислов и ферритов, полученные в результате топохимического процесса, характеризуются высокой концентрацией неравновесных дефектов [223], существенно влияющих на скорость спекания. Так, например, окись магния, полученная разложением Mg Os, спекается настолько интенсивно, что при горячем прессовании (600°С) пористость практически падает до нуля. В то же время кристаллическая окись магния, не имеющая указанных выше дефектов, начинает спекаться лишь при 1400°С [224].  [c.36]

Состояние твердых тел, характеризующееся наличием неравновесных дефектов, принято называть активным в отличие от нормального состояния, дефектность которого обусловлена равновесной разупорядоченностью решетки. Мера активности (по Хют-тигу [225]) — избыточная свободная энергия 1 г-мол вещества в данном состоянии по сравнению с нормальным. Эта энергия равна сродству процесса активное вещество- -термодинамически стабильное вещество и может быть рассчитана для окислов или ферритов по уравнению  [c.36]


Смотреть страницы где упоминается термин Ферриты дефекты : [c.174]    [c.233]    [c.73]    [c.248]    [c.176]    [c.149]    [c.75]    [c.75]    [c.102]    [c.105]    [c.107]   
Физические основы ультразвуковой технологии (1970) -- [ c.118 ]



ПОИСК



Некоторые свойства ферритов, контролируемые дефектами нестехиометрии

Процессы разупорядочения и основные виды дефектов в ферритах

Ферре

Ферриты



© 2025 Mash-xxl.info Реклама на сайте