Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зерна столбчатая

На участке 1 металл, который находился в расплавленном состоянии, затвердевая, образует сварной шов, имеющий литую структуру из столбчатых кристаллов. Грубая столбчатая структура металла шва является неблагоприятной, так как снижает прочность и пластичность металла. Зона термического влияния имеет несколько структурных участков, отличающихся формой и строением зерна, вызванных различной температурой нагрева в пределах 1500—450° С.  [c.29]


У поверхности, где кристаллизация происходит быстро, возникает зона равноосного мелкого зерна. Затем зона кристаллизации со столбчатым строением и центральная зона крупного равноосного зерна. Слиток такого типа формируется и при непрерывной разливке.  [c.501]

Наложение ультразвука в процессе кристаллизации сплава в изложнице способствует росту числа зародышей кристаллизации и измельчению кристаллитов слитка, уменьшает степень дендритной ликвации и в ряде случаев повышает деформируемость металла. В частности, применение ультразвука при обработке сталей У9 и У10 позволяет уменьшить размеры зерна до № 5—7, в результате чего предел прочности их возрастает на 75% при одновременном повышении характеристик пластичности на 30—60%. Большой эффект дает ультразвук на сплавах железа с хромом, кремнием и алюминием, особенно склонными к росту зерна. Обработка ультразвуком устраняет столбчатую структуру слитка, что также сопровождается увеличением предела прочности более чем в 1,5 раза, а относительного сужения и удлинения — в 4—13 раз. При этом понижается критический интервал хрупкости. Однако применение ультразвука в большой металлургии затруднено, так как требует больших мощностей (до 1,5— 2,5 кВт/кг).  [c.503]

Если сплав со столбчатой структурой подвергнуть обработке в магнитном поле, т. е. получить анизотропию частиц выделения, то можно еще повысить магнитную энергию. Рекордная магнитная энергия получена на монокристалле и равна 48-10 дж/м (12,0-10 гс. э), В сплавах системы Fe—Ni—А1—Со коэрцитивная сила повышается при легировании этих сплавов титаном. Влияние титана на повышение коэрцитивной силы связано с измельчением зерна. В сплавах, содержащих титан, затруднено получение столбчатой структуры, следовательно, магнитная энергия их не высока. Однако специальным легированием сплавов, содержащих титан, можно добиться получения столбчатых кристаллов при кристаллизации. У таких сплавов наряду с высокой коэрцитивной силой достигается большая магнитная энергия.  [c.225]

Известно [59], что измельчение зерна является одним из способов устранения брака по горячим трещинам в слитках и фасонных отливках. Это объясняется тем, что уменьшение размеров зерна и особенно переход от столбчатой структуры к равноосной в литом сплаве сужает температурный интервал хрупкости и повышает относительное удлинение в нем. Снижается также температура начала линейной усадки и уменьшается усадка в эффективном интервале кристаллизации.  [c.47]


Влияние перегрева и температуры заливки на структуру заготовок при обычных условиях литья общеизвестно с увеличением перегрева увеличивается протяженность зоны столбчатых кристаллов и укрупняются зерна в центральных зонах слитка [41]. Эта зависимость сохраняется и при кристаллизации под поршневым давлением.  [c.108]

В макроструктуре слитков (Z) = 114 мм, HjD = ) из алюминиевого сплава АЛ2, затвердевших под атмосферным давлением, наблюдается значительный слой столбчатых кристаллов, переходящих в крупные равноосные зерна. Отливки, затвердевшие под поршневым давлением, также состоят из двух зон, но столбчатые кристаллы гораздо мельче, занимают меньшую площадь. В последнем случае столбчатая зона образуется в основном до приложения давления.  [c.114]

Известно, что вибрирование кристаллизующегося расплава позволяет во многих случаях устранить структурную неоднородность отливок, т. е. устранить зону столбчатых кристаллов и измельчить зерно [41].  [c.140]

Применение вибрации с момента заливки до подачи давления приводит к заметному измельчению зерна в отливках (Р=30- 100 МН/м ). При кристаллизации без вибрации в структуре отливок, как правило, наблюдалось три зоны наружный слой мелких кристаллов, зона столбчатых кристаллов и внутренняя зона равноосных кристаллов. В структуре отливок, полученных под действием вибрации и давления, четкого разграничения на три зоны не наблюдается. Все отливки состоят из мелких равноосных зерен.  [c.140]

На отдельных участках труб отмечается некоторое расширение границ между крупными столбчатыми зернами покрытия.  [c.244]

Протекторы из чистого цинка обычно бывают очень крупнозернистыми и имеют структуру столбчатых дендритов (рис. 7.3). Это ведет к неравномерной коррозии (потере массы металла) протектора. Кроме того, при изготовлении таких протекторов необходимо следить за тем, чтобы низкое содержание железа в исходных материалах сохранялось и при переработке. По новейшим техническим условиям к цинку добавляют до 0,15 %) d и 0,5 % А1 [6, 7]. Благодаря этим легирующим элементам не только достигается значительное измельчение зерна (см.  [c.179]

Наличие измельчения зерна у медных покрытий, связанного с внедрением частиц корунда, подтверждается рентгенографическими исследованиями. При этом отмечается, что структура покрытий не обязательно соответствует характеру поверхности сравнительно гладкие покрытия из чистого электролита могут быть более крупнокристаллическими, чем покрытия из суспензии. Однако чистота поверхности КЭП бывает достаточно высокой. Так, керметы на основе никеля, содержащие включения карбидов и оксидов с частицами размером I—4 мкм, имеют высокую чистоту поверхности (обычно около 0,3—1 мкм). При травлении поперечных шлифов таких КЭП не выявляется структура матрицы, в то время как у чистых никелевых осадков обнаруживается столбчатая структура.  [c.106]

ВИСИТ и от того, что ось легкого намагничивания в столбчатом кристалле пересекает меньше границ (между зернами), являющихся источниками внутренних размагничивающих полей. Чем крупнее кристаллы, тем меньшее число границ приходится на единицу высоты отливки.  [c.103]

Точечная сварка. В сечении сварной точки имеется чечевицеобразное ядро со столбчатой структурой литого металла, окруженное зоной перегрева с крупным зерном, за которой следует (при сварке стали перлитного класса) зона мелкого нормализованного зерна, переходящая в основной металл.  [c.196]

На каждом частично оплавленном зерне основного металла вырастает группа одинаково ориентированных дендритов (древовидных кристаллов), срастающихся в столбчатый кристаллит. Направление осей первого порядка дендритов совпадает с направлением отвода тепла. Обычно они растут перпендикулярно границе раздела твердой и жидкой фазы в направлении к источнику  [c.168]

Практически для анализа кристаллического строения отливок протяженность зоны столбчатых кристаллов удобно связывать с величиной среднего диаметра с1 кристаллического зерна в центральной зоне тела.  [c.175]

Если в расплаве присутствуют примеси с разной температурой дезактивации, то с увеличением температуры заливки возможно ступенчатое расширение зоны столбчатых кристаллов и укрупнение зерна в центральной зоне отливок (число ступеней будет соответствовать числу сортов активной примеси). Однако указанное явление возможно при условии, что расплав во время плавки не перегревается выше температуры заливки. Например, это наблюдается при литье сплава АМц в нагретые формы (рис. 16, а). На практике же в силу специфики технологии плавки расплав перегревается намного выше температуры заливки и, как правило, выше температуры дезактивации большей части примесей. Поэтому на практике ступенчатое изменение кристаллического строения отливок по мере повышения температуры заливки не наблюдается.  [c.177]


Модификаторы 1-го рода, 2-го рода, активные примеси и затравки влияют на процесс формирования кристаллического строения отливок, в конечном счете, одинаково — все они с увеличением количества их сокращают зону столбчатых кристаллов и измельчают кристаллическое зерно в отливках. Однако одновременно с измельчением кристаллического зерна под действием этих примесей внутреннее строение зерен укрупняется.  [c.180]

Действие лантана идентично церию [130]. Весьма перспективно комплексное микролегирование церием и бором, которое позволяет повысить жаропрочность. Измельчение зерна, сокращение зоны столбчатых кристаллов, более равномерное распределение вторичной фазы, получение неметаллических включений более благоприятной формы являются следствием микролегирования [131]. Хорошие результаты получают и при вводе бора вместе с кальцием. Вопросам микролегирования нержавеющих сталей посвящены также работы [132—134 и др.]. Следует полагать, что дальнейшие исследования позволят найти наиболее оптимальные формы модифицирования металла и дополнительно улучшить его качество.  [c.195]

В 1960-х и 70-х гг. появились первые работы [1, 2], показавшие, что можно свести к минимуму напряжения, действующие на слабые границы зерен при повышенных температурах, если выстроить эти границы параллельно оси главного действующего напряжения тем самым можно затормозить зарождение разрушения и увеличить долговечность сплавов в условиях ползучести. Обычно процесс направленной кристаллизации используют для того, чтобы сориентировать границы зерен параллельно направлению кристаллизации. В результате формируется микроструктура, состоящая из столбчатых зерен, и все они параллельны направлению кристаллизации (как в стойке для тростей). У каждого из этих зерен низкомодульное направление <001> ориентировано параллельно оси зерна, но в пределах зоны <001> кристаллографические направления могут меняться как угодно. Путем небольшого изменения процесс направленной кристаллизации приспособлен для получения монокристаллических изделий, вообще не содержащих границы зерен [3—5]. При таком состоянии суперсплавов их низкомодульная кристаллографическая ориентировка <001> также параллельна направлению кристаллизации, а вторичная ориентация в плоскости, перпендикулярной направлению кристаллизации, носит случайный характер. Если пользоваться затравками, возможны другие главные и вторичные ориентировки. Три вида кристаллизации — при обычном литье, при получении структуры столбчатых зерен и выращивании монокристалла — представлены на рис. 7.1 тремя турбинными лопатками, которые были подвергнуты макротравлению.  [c.240]

I. Методы монокристаллического литья, основанные на конкурентном росте столбчатых зерен. Конкурентный рост зерен основан на приоритетном сохранении растущих с наибольшей скоростью столбчатых кристаллов, ориентированных в направлении [001], При получении монокристаллических деталей на установках с водоохлаждаемым холодильником на практике используют эффект резкого сужения формы, благодаря чему из многих кристаллитов, зарождающихся на поверхности холодильника, отбирают единственный кристаллит, который первым достигнет этого сужения, В данном случае используется размерный ограничитель столбчатой структуры (размер поперечного сечения зерна столбчатой структуры значительно больше мундштука ограничителя, рис. 15.5, а). При прохождении поверхности кристаллизации через идущий вверх канал — селектор (ступенчатый — прямой угол , угловой — наклонный, спиральный — геликоидный, см. рис. 15.5, б—г) обеспечивается строгая ориентагщя преимущественного направления роста кристаллов (кристаллографическое направление [001]) вдоль оси селектора, поскольку кристаллы с другой ориентацией, упираясь в стенку наклонно или перпендикулярно идущему каналу, прекращают свое развитие. Вырастающий из литника-селектора кристалл является зародышем будущей моногфисталлической отливки. Ускорение процесса отбора зерна достигается при размещении начальных сечений литниковой системы (стартера, литников-селекторов) существенно ниже сечения детали (рис. 15.6). В процессе роста дендриты должны несколько (3—4) раз поменять свое направление до того, как соединиться с сечением изложницы. Этим обеспечивается рост лишь одного зерна с кристаллографическим направлением [001]. Для получения отливки используют керамическую оболочковую форму, изготовленную по выплавляемой модели. Отливка (рис. 15.6) вместе с  [c.368]

Г отовыми центрами кристаллизации металла многослойного шва являются частично оплавленные зерна столбчатых кристаллов предыдущего слоя. Видимая граница между слоями металлов исчезает.  [c.131]

Структура металла швов при электрошлаковой сварке может характеризоваться наличием трех зон (рис. 110, й) зона 1 крупных столбчатых кристаллов, которые растут в направлении, обратном отводу теплоты зона 2 тонких столбчатых кристаллов с меньшей величиной зерна и несколько большим их отклонением в сторону теплового центра зона 3 равноосных кристаллов, располагающаяся посередине шва. В зависимости от способа олектро-шлаковой сварки, химического состава металла шва и режима сварки может быть получено различное строение швов. Повышение содержания в Н1ве углерода и марганца увеличивает, а уменьшение интенсивности теплоотвода уменьшает ширину зоны 1.  [c.213]

В верхней части слитка формируется усадочная раковина 4, отрезаемвя после прокатки. В средней (осевой) части слитка скапливаются легкоплавкие неметаллические примеси и газовые включения. Неметаллические примеси затвердевают и остаются между столбчатыми кристаллами, а также на стыке зоны столбчатых и равноосных кристаллов и особенно близ вертикальной оси слитка, куда они оттесняются более тугоплавкими, чем они, зернами стали.  [c.28]

Нормализацией может быть достигнут ряд целей измельчение выросшего по какой-то причине зерна стали, разрушение затрудняющей механическую обра тку цементитной сетки вокруг зерен заэвтектоидной стали (>0,8 % углерода), а также перекристаллизация грубой и хрупкой столбчато-дендритной структуры литой стали в мелкозернистую, равноосную.  [c.35]


Приложенное давление измельчает зерно и уменьшает протяженность зоны столбчатых кристаллов в большей степени у втулок и отливок типа стакана из алюминиевых сплавов, чем из медных, так как у первых создается меньший температурный перепад между расплавом и прессформой.  [c.114]

Следовательно, вибрирование расплава и кристаллизация его под давлением приводят к уничтожению зоны столбчатых кристаллов и измельчению зерна а-твер-дого раствора в отливках из бронзы Бр.ОЦС5-5-5. При этом получается однородное по составу строение твердого раствора с более равномерным распределением олова, уменьшается количество эвтектоида, а включения свинца раздроблены и присутствуют в мелкодис-  [c.140]

Магнитные сплавы не только с магнитной, но и с кристаллической текстурой имеют более высокие свойства. Кристаллическая текстура создается направленной кристаллизацией вдоль внешнего магнитного поля при термомагнитной обработке. Магнит в основном состоит из параллельных кристаллов столбчатой формы, расположенных в виде колоннады. Кристаллическая текстура создается вдоль направления легкого намагничивания, внутри столбчатого кристалла магнитная линия пересекает небольшое число границ между зернами. Кристаллическую текстуру получают либо использованием нагреваемых форм для литья, либо применением зонной переплавки в том и другом случае нижняя часть формы или заготовки охлаждается при помощи холодильника, рост столбчатых кристаллов начинается от охлаждаемого основания магнита. По первому способу керамическую форму для отливки магнита ставят на холодильник и помещают в графитовый цилиндр, при помощи которого в индукционной печи форму нагревают до 1550° С. После залнвки металла форму медленно охлаждают. По второму способу определенная зона в отливке, находящейся в керамической форме, нагревается высокочастотным индуктором при его  [c.266]

В работе изучено влияние церия и бора на структуру и свойства алюминидных и сили-цидных покрытий на ниобии. Установлено, что введение церия в алюминидное покрытие приводит к измельчению зерна в покрытии, снижению тенденции к образованию столбчатой структуры и склонности к высокотемпературному росту зерен. Введение бора способствует образованию при температурах 650—900° С на поверхности силицидного покрытия защитной стекловидной плевки и повышает его жаростойкость в широком диапазоне температур. Лит. — 5 назв., ил. — 1.  [c.259]

Пары хрома на разогретой подложке образуют легированный слой, состоящий из непрерывного раствора хрома в а-железе. На шлифе, протравленном в 4%-ном растворе азотной кислоты, железохромовый слой имеет вид светлой нетравящейся зоны. В реактиве Марбля выявляются столбчатые зерна феррита, вытянутые вдоль направления диффузии атомов хрома и железа (рис. 1).  [c.202]

Газовыделение в зазоры повышает внутреннее давление и создает опасность разрушения оболочки. Обычно при изготовлении твэлов зазоры заполняют гелием, имеющим лучший коэффициент теплопроводности по сравнению с воздухом и аргоном. При газовыделении в зазоры ухудшается теплопередача между топливом и оболочкой, что приводит к повышению температуры сердечника. При облучении снижается и без того низкая теплопроводность двуокиси урана. Малая теплопроводность и обусловленные ею высокие термические напряжения) вследствие большого градиента температуры вызывают растрескивание сердечника, причем трещины распространяются обыч--но в радиальном направлении. Облучение сопровождается изменением структуры спеченной двуокиси вследствие рекристаллизации и образованием столбчатых кристаллов, охватывающих до 70% всей площади поперечного сечения сердечника. Отклонение состава двуокиси урана от стехиометричного интенсифицирует также рост зерна. В центре цилиндрических таблеток или стержней, т. е. в зоне наивысшей температуры при облучении, образуется полость. При возрастании температуры в центре сердечника твэла до температуры плавления образование полости облегчается. При облучении свободно засыпанной или уплотненной, но неспеченной, двуокиси урана происходит интенсивное спекание частиц при температуре ж 900° С.  [c.131]

Развитие учения о кристаллизации привело к созданию ряда теорий, объясняющих процесс формирования кристаллического строения реальных отливок и слитков. Однако среди них нет теории, которая могла бы с определенностью, достаточной для практики, указать эффективные способы управления процессом кристаллизации отливок. В частности, известные теории не могут указать надежные способы устранения зоны столбчатых кристаллов в отливках и слитках из однофазных конструкционных сплавов (например, из сталей, жаропрочных сплавов, деформируемых сплавов алюминия, магния и т. п.). Указанные теории не в состоянии рекомендовать также способы, с помощью которых возможно добиться сквозной транскристаллизации отливок из некоторых магнитных сплавов (например, из сплавов типа тикональ). В этой связи центральной задачей теории формирования кристаллического строения отливок, разработанной в работе [3], является объяснение причин возникновения и прекращения транскристаллизации расплава при охлаждении его в литейной форме. Цель этого объяснения — указать способы, как избежать образования зоны столбчатых кристаллов и измельчить кристаллическое зерно в отливках и слитках, или, наоборот — способы вызвать транскристаллизацию.  [c.171]

Рис. 19. Кристаллическое строение отливок из сплавов алюминия с разным содержанием кремния, залитых через виброворонку i — прочность сплавов при температуре, близкой к солидусу 2 — средний размер зерна 3 — протяженность зоны столбчатых кристаллов Рис. 19. <a href="/info/770858">Кристаллическое строение</a> отливок из <a href="/info/6789">сплавов алюминия</a> с разным содержанием кремния, залитых через виброворонку i — прочность сплавов при температуре, близкой к солидусу 2 — <a href="/info/39164">средний размер зерна</a> 3 — протяженность зоны столбчатых кристаллов
ЧТО столбчатым зернам присуща слабость границ, которая не препятствует зарождению новых зерен различной ориентации, например, таких, которые появляются во время превращения аустенита в ферритной стали. Свободные от трещин швы при сварке узлов из аустенитной стали могут быть получены при изменении состава наплавленного металла так, чтобы он содержал небольшое количество феррита. Требуемые изменения состава стали и дефекты, связанные с каждой структурной областью, можно предсказать, пользуясь диаграммой Шеффлера или Делонга [3], например, такой, как показана на рис. 7.3.  [c.73]

Зерна сплавов Си — А1 — N1 успешно измельчают путем введения Т1 [73]. При добавке титана обнаруживается двойной эффект. Во-первых, в структуре слитков подавляется образование столбчатых кристаллов, а зона мелких равноосных кристаллов интенсивно развивается. Это приводит к предотвращению образования трещин при литье и прокатке. Во-вторых, при добавке титана не происходит огрубления структуры при нагреве после деформации. Таким образом, введение титана не только приводит к единовременному измельчению структуры, но и обеспечивает предотвращение роста зерен принагреве. В мелкозернистых образцах, изготовленных указанным способом, при испытаниях на сжатие возможна деформация на 20 % при Т > 300 °С, возможна также деформация растяжением этих образцов при Т > 350 °С, а при 650 °С наблюдается удлинение около 300 %, т.е. сплав проявляет сверхпластические свойства. Сплавы без добавки титана невозможно подвергнуть пластической деформации в холодном состоянии, но при введении титана возможны холодная прокатка или холодное волочение со степенью деформации около 10 %.  [c.131]


Измельчение зерна с помощью зародышеобразующего покрытия стенок формы носит двумерный характер. Поэтому на некоторую глубину от поверхности может распространиться рост зерен столбчатых, способных оказать существенное неблагоприятное влияние на свойства таких массивных (толстостенных) деталей, как цельнолитые турбинные диски (рис. 15.10, а). Чтобы избежать подобных состояний, можно  [c.180]

Нанвысшей жаропрочностью обладают те изделия из суперсплавов, которые получены направленной кристаллизацией, — со столбчатым зерном или в виде монокристаллов. Поэтому направленная кристаллизация суперсплавов находит широкое применение при изготовлении турбинных лопаток — изделий, которые требуют от суперсплавов наилучших высокотемпературных свойств. Есть два главных обстоятельства, которые обусловливают превосходство суперсплавов в изделиях, полученных направленной кристаллизацией, над суперсплавами в изделиях, полученных обычным литьем. Первое обстоятельство заключается в том, что выстраивание границ зерен вдоль оси действующего напряжения и устранение границ зерен, перпендикулярных этой оси (в случае монокристаллических изделий — полное устранение границ зерен), приводит к увеличению пластичности при повышенных температурах, поскольку подавляет роль границ зерен как  [c.239]

Изделия со столбчатой направленной структурой и монокрис-таллические изделия получают, в сущности, с помощью одного и того же процесса [7]. Устранение границ зерен или выстраивание их в направлении, параллельном оси отливки или лопасти лопатки, может быть лучше всего выполнено, если воспользоваться высокоэнергетическим процессом жидко-твердого перехода суперсплавов, т.е. кристаллизацией. Обеспечив затвердевание суперсплава при управляемом перепаде температур, получают удлиненные зерна и, следовательно, межзеренные границы, вытянутые в направлении этого перепада.  [c.241]

Монокристаллическую отливку получают, вставив поверх блока, зарождения зерен дополнительную геликоидную конструкцию она служит в качестве фильтра, который пропускает сквозь себя лишь одно ра стуш,ее зерно. Это происходит потому, что суперсплавы затвердевают посредством роста денд-ритов. Каждый дендрит имеет возможность расти только в трех взаимно перпендикулярных направлениях <001>. Меняющееся непрерывно направление геликоида в сочетании с ортогональной природой дендритного роста мало-помалу пресекает рост всех, кроме одного наиболее удачно ориентированного и расположенного зерна в результате из вершины геликоида исходит монокристалл (рис. 7.3). Это избранное зерно и заполняет в дальнейшем полость оболочки таким же образом, как при отливке на структуру столбчатых зерен. Получается монокристаллическая отливка лопатки с ориентировкой монокристалла <001> (см. правую лопатку на рис. 7.1). В настоящее время вышеописанный процесс направленной кристаллизации используют для производства в промышленных количествах отливок полых турбинных лопаток со столбчатой структурой и монокристаллических.  [c.242]


Смотреть страницы где упоминается термин Зерна столбчатая : [c.125]    [c.39]    [c.225]    [c.28]    [c.116]    [c.72]    [c.28]    [c.178]    [c.80]    [c.178]    [c.191]    [c.241]   
Физическое металловедение Вып II (1968) -- [ c.412 , c.413 ]



ПОИСК



Зерно



© 2025 Mash-xxl.info Реклама на сайте