Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация пластическая горячая

Аустенитные хромоникелевые стали хорошо свариваются всеми видами сварки допускают большую пластическую деформацию в горячем и холодном состоянии — хорошо вальцуются в обечайки, штампуются в днища, допускают вытяжку горловин патрубков.  [c.115]

Дефекты поверхности металлопродукции 84 Деформация 248 горячая 249 неполная горячая 249 пластическая 17 -упругая 17  [c.1076]

Объем тела несколько изменяется и в результате пластической деформации. При горячей обработке литого металла происходит его уплотнение, так как завариваются раковины, пустоты, микротрещины. При этом объем тела уменьшается, а удельный вес увеличивается. При холодной обработке давлением, наоборот, происходит некоторое увеличение объема в результате образования микротрещин. Однако, как указано выше, изменение размеров при этом незначительное (доли процента) и им можно пренебречь.  [c.37]


При горячей деформации пластические свойства металла выше, а сопротивление деформации ниже, чем при холодной деформации, поэтому горячая деформация с точки зрения энергетических затрат на деформирование более выгодна, чем холодная. Вследствие этого холодную деформацию применяют только в том случае, если по различным техническим и технологическим требованиям готовый катаный продукт нельзя получить в горячем (разупрочненном) со-тоянии  [c.373]

Если в процессе обработки давлением в металле протекает рекристаллизация, то такую деформацию называют горячей пластической деформацией.  [c.109]

Известно, что для горячих процессов обработки металлов давлением влияние скорости деформации на интенсивность напряженного состояния оказывается более ощутимо, чем для процессов холодной обработки. Поэтому при большом отношении М линейных размеров двух геометрически подобных рассматриваемых тел (натуры и модели), претерпевающих пластическую деформацию в горячем состоянии, значения а,- интенсивности напряженного состояния в большом теле (в натуре) должны быть несколько меньше значений в соответствующих точках малого тела (модели).  [c.423]

Стали, используемые для изготовления паропроводов, должны хорошо свариваться, быть способными подвергаться пластической деформации в горячем состоянии и обрабатываться на металлорежущих станках и др. Поэтому содержание углерода в них не превышает 0,20—0,25%.  [c.69]

Различают два способа пластического деформирования металлов, применяемые в технике холодную обработку давлением (или холодную пластическую деформацию) и горячую обработку давлением (горячую пластическую деформацию).  [c.163]

При горячей деформации пластические свойства металла выше, а сопротивление деформации ниже, чем при холодной деформации, поэтому горячая деформация сопровождается меньшими энергетическими затратами, чем холодная. Вследствие этого холодную деформацию применяют только в том случае, если горячая деформация неприменима.  [c.500]

Обработка зубьев режущими инструментами является весьма трудоемкой и дорогостоящей операцией трудоемкость обработки зуба достигает 60% общей трудоемкости изготовления зубчатого колеса, причем при обработке зубьев отходит в стружку 9—15% веса заготовки, а прочностные качества зубчатого профиля ухудшаются. Поэтому возникла необходимость изыскания новых технологических методов получения зубьев. Одним из таких методов является образование зубьев путем пластической деформации в горячем состоянии. На некоторых заводах этот новый метод получил промышленное применение при изготовлении цилиндрических зубчатых колес. Сравнительно с фрезерованными зубьями себестоимость накатанных зубчатых колес снижается на 20%, а износоустойчивость повышается на 50-70%.  [c.423]


Вредное влияние на способность к деформации в горячем состоянии оказывают загрязнения латуни висмутом и свинцом. Причину надо искать в образовании легкоплавких включений этих металлов по границам зерен. Однако вредное влияние свинец оказывает только на а-латунь, не испытывающую фазовых превращений (Zn<32%). При содержании цинка более 32% свинец, располагающийся по границам зерен, в результате перекристаллизации a-> оказывается внутри зерен и не мешает обработке давлением. Поэтому в латунях с содержанием цинка 32—38% загрязнение свинцом можно допустить в значительно больших пределах, а при содержании цинка больше 38—40% свинец вводят умышленно до 1—2%, так как такие латуни обрабатываются давлением в однофазном -состоянии, и свинец не вредит способности латуни пластически деформироваться. Одновременно обособленные включения свинца повышают обрабатываемость ре>) ущим инструментом, так как облегчают стружколомание.  [c.429]

Пластическая деформация, при которой металл рекристаллизуется полностью, называется полной горячей деформацией. Пластическая деформация, при которой рекристаллизация протекает частично, называется неполной горячей деформацией. Пластическая деформация, при которой металл упрочняется без рекристаллизации, назьшается холодной деформацией. Ковку вольфрама при температуре 1000 , например, следует отнести к холодной "деформации, поскольку температура рекристаллизации вольфрама  [c.304]

Какую пластическую деформацию называют горячей Как она влияет на структуру и свойства металлов  [c.22]

Следовательно, при пластическом деформировании выше температуры рекристаллизации упрочнение и наклеп металла, если и произойдут, то будут немедленно сниматься. Такая обработка, при которой нет упрочнения (наклепа), называется горячей обработкой давлением. Обработка давлением (пластическая деформация) ниже температуры рекристаллизации вызывает наклеп и называется холодной обработкой.  [c.87]

Деформацию изгиба (рис. 5.60, а) можно исключить предварительным обратным прогибом балки перед сваркой (рис. 5.60, б) рациональной последовательностью укладки швов относительно центра тяжести сечения сварной балки (рис. 5.60,6, в случае несимметричной двутавровой балки вначале сваривают швы I и 2, расположенные ближе к центру тяжести) термической (горячей) правкой путем нагрева зон, сокращение которых необходимо для исправления деформации заготовки, до температур термопластического состояния (рис. 5.60, г штриховкой показаны зоны нагрева). При правке заготовки нагревают газовым пла.менем или дугой с применением неплавящегося электрода. Разогретые зоны претерпевают пластическую деформацию сжатия, а после охлаждения — остаточное укорочение. Последнее обусловливает дополнительную деформацию сварной заготовки, противоположную но знаку первоначальной внешней сварочной деформации. Подобную деформацию можно также получить, если наложить в указанных зонах холостые сварные швы.  [c.252]

Холодная и горячая пластические деформации  [c.87]

Различают два способа осуществления пластической деформации холодную и горячую обработку давлением.  [c.87]

Горячая пластическая деформация — это обработка давлением при температурах выше Гр. Следовательно, Гр является границей между холодной и горячей обработками давлением.  [c.88]

Перегрев и пережог металла являются результатом неправильного выбора температуры нагрева при горячей обработке давлением. Для уменьшения сопротивления пластической деформации (повышения пластичности металла) температуру нагрева следует выбирать возможно более высокой однако при этом может увеличиться зерно и понизиться ударная вязкость. Поэтому необходимо учитывать температуру начала обработки (обусловливающую наименьшее сопротивление деформации) и ее конца (обеспечивающую рекристаллизацию металла и необходимые размеры зерен).  [c.88]

Основные способы упрочнения материалов следующие горячая обработка давлением, легирование, упрочняющая термическая и химико-термическая обработки, обработка методами холодной пластической деформации.  [c.164]


Титановые сплавы хорошо поддаются горячей пластической деформации (в интервале 800 —1000°С), которая является основным методом изготовления полуфабрикатов. Отливка титановых сплавов крайне затруднительна, так как титан в расплавленном состоянии поглощает кислород, азот и водород и взаимодействует с формовочными материалами.  [c.188]

По расположению в сварном соединении различают горячие трещины в шве, в зоне сплавления, в околошовной зоне, а также в зависимости от ориентировки их относительно направления сварки — продольные и поперечные. Во всех случаях вероятность образования трещин определяется соотношением пластических свойств соединений в т.и.х. и темпом деформаций. Однако степень влияния отдельных технологических и металлургических факторов для каждого вида может быть существенно различной в связи с неодинаковыми условиями формирования химической и физической неоднородности в различных зонах сварного соединения. Особо следует выделить трещины повторного нагрева, образующиеся в ранее наложенных валиках при многослойной сварке в результате термодеформационного воздействия от сварки последующих слоев.  [c.481]

Таким образом, практика подтверждает результаты исследований, что хрупкость и пластичность не есть неизменные свойства материалов, а являются лишь состояниями, в которых материалы могут находиться. Под влиянием различных факторов материалы могут переходить из хрупкого состояния в пластичное и наоборот. Например, высокоуглеродистые инструментальные стали, хрупкие при комнатной температуре, становятся пластичными при высоких температурах и поддаются горячей пластической обработке то же самое можно сказать и о ковких чугунах. Инструментальные стали, хрупкие при растяжении или изгибе, ведут себя как пластичные при деформации кручением и т.д.  [c.113]

Реализация пластического течения разнообразна. Без информации о действующих механизмах пластической деформации практически невозможно сделать заключение о наилучшем использовании ресурса пластичности металлов. Ситуация особенно осложняется в условиях горячей деформации, когда могут реализоваться комбинации различных механизмов или действовать одновременно несколько механизмов деформации. Физическая теория пластичности устанавливает граничные параметры (структура, температурно-скоростные условия деформации), при которых наблюдается смена одного  [c.181]

Структура, формирующаяся в процессе горячей пластической деформации, является термодинамически неравновесной. Поэтому связь между напряжениями, деформациями и скоростями деформации неоднозначна. Величина напряжений в значительной мере определяется тем, как происходило развитие деформаций во времени. Иными словами, история процесса оказывает значительное влияние на сопротивление деформации и напряженно-деформированное состояние при обработке металлов давлением.  [c.481]

Введение примесей в металл (легирование) увеличивает температуру рекристаллизации. Чем выше степень деформации, тем ниже температура рекристаллизации. Если пластическая деформация происходит при температуре выше температуры рекристаллизации, то эффект упрочнения будет устраняться процессом рекристаллизации. При нагреве нагартованного металла ниже температуры рекристаллизации наклепанное состояние металла сохраняется. Это дает основание различать два вида обработки металла горячую и холодную деформации. Горячая деформация — пластическая деформация выше температуры рекристаллизации холодная деформация — пластическая деформация ниже температуры рекристаллизации.  [c.85]

Технические процессы обработки металлов давлением осуществляются как в холодном, так и в горячем состоянии. Основными механизмами пластической деформации в горячем и холодном состоянии являются внут-ризеренное скольжение, двойникование, взаимное перемещение и поворот зерен. При пластической деформации происходит измельчение зерен металла, ориентация зерен вдоль преимущественного направления деформации, искажаются и заклиниваются плоскости скольжения, возникают напряжения между отдельными зернами, частями металла и др.  [c.249]

Если скорость рекристаллизации недостаточна для полного снятия упрочнения, получаемого металлом в процессе деформирования, то такая обработка называется неполной горячей деформацией. Неполная горячая де-форматщя приводит к получению неоднородной структуры, снижению прочностных и особенно пластических свойств.  [c.398]

Накатывание — ирогрессивньш способ изготовления зубчатых колес путем пластических деформаций в горячем или холодном етоянии. Поштучную накатку пр оизводят в автоматическом цикле (рис. 168, а, б). После установки и нагрева заготовки 1 раскат-ники 2 начинают вращаться с реверсированием, получая радиальную подачу Sp. Когда раскатники сблизятся до установленного межосе- ого расстояния, подача автоматически выключается, а валки совершают несколько оборотов для калибровки зубьев,.  [c.223]

П.ластическое течение металла начинается в то время, когда касательные напряжения (напряжения, действующие в плоскости сдвига), действующие в наиболее благоприятно расположенной плоскости скольжения, достигают определенной величины, зависящей от свойств металла и условий деформации. Величина пластической деформации для горячего металла может быть весьма  [c.149]

Все большее значение приобретают вопросы нелинейной теории упругости, связанные с конечными деформациями. Расширение технологических возможностей привело к постановке задач о поведении реальных конструкций и материалов за пределами упругости и в области возникновения остаточных деформаций. Так появилась самостоятельная область теории деформируемого тела — теория пластичности. Она решает задачи, связанные с пластической деформацией в горячем и холодном состояниях (прокатка, ковка, штамповка, волочение), а также вопросы упрочггения материалов за счет уменьшения поверхностной шероховатости и создания заданного распределения остаточных деформаций. При этом возникла необходимость рассмотрения задач о равновесии неизо-  [c.31]


Скорость и степень спекания могут повыситься при наличии искаженной кристаллической решетки исходных материалов и продуктов реакции. Источники таких искажений могут возникнуть при подготовке исходных материалов. Измельчение материалов само по себе далеко не всегда может привести к значительным искажениям в решетке. Прессование также не может вызвать искажения в нужной мере, так как упругие деформации, возникающие в отдельных кристаллах, особенно в месте их соприкосновения, снимаются после прекращения внешнего давления. Но первоначальное уплотнение при прессовании, уменьшающее необходимый для спекания перенос вещества, является весьма существенным фактором. Повышение давления прессования оказывает влияние на плотность спрессованных изделий и тем самым ускоряет процесс спекания. Горячее прессование еще более ускоряет спекание. Давление в этом случае, как и поверхностное натяжение, является источником разницы кайцентраций вакансий и ускоряет процессы пластических деформаций (пластическое течение) в кристаллах. Важным в этом отношении является вопрос (В влиянии примесей и искусственно вводимых добавок на протекание процесса спекания без участия жидкой фазы. Часто вопрос об успешном применении того или иного исходного материала для огнеупоров из чистых окислов сводится к вопросу о подборе добавок, позволяющих проводить спекание при допустимых температурах и не ухудшающих эксплуатационных свойатв изделий.  [c.377]

Большая часть стали поставляется и применяется в виде горячедеформированного металла. При пластической деформации в горячем состоянии (прокатке и ковке) грубая литая структура стали разрушается, зерна измельчаются и вытягиваются, поры и пустоты завариваются, металл уплотняется. Горячедеформированный металл имеет лучшие физико-механические свойства по сравнению с литым.  [c.45]

Ускоренное охлаждение стали в некоторых композициях аусте-нитных стале11 может привести к фиксации в их структуре первичного б-феррита, в некоторых случаях необходимого с точки зрения предупреждеиия горячих трещин. Холодная деформация, в том числе и наклеп закаленной стали, в которой аустенит зафиксирован в неустойчивом состоянии, способствует превращению Y а. Феррит, располагаясь тонкими прослойками по границам аустенитпых зереп, блокирует плоскости скольжения и упрочняет сталь (рис. 140). Упрочнение стали тем выше, чем ниже температура деформации. Обычно тонколистовые хромоникелевые стали в состоянии поставки имеют повышенные прочностные и пониженные пластические свойства. Это объясняется их повышенной деформацией при прокатке и пониженной температурой окончания прокатки.  [c.283]

При холодном клепании усадка заклепки происходит только в результате п.тастической деформации материала заклепки при расклепывании. Осевая сила, стягивающая соединяехше детали, при холодном клепании меньше, чем при горячем, и зависит от степени пластической деформации заклепок, которая может колебаться в значительных пределах II имеет более или менее постоянную величину только при машинном клепашш, например гидравлическом.  [c.196]

Кристаллизационные трещины образуются, как правило, в сварном шве н реже в зоне полуоплавленных зерен. На рис. 12.45 представлены характерные места расположения горячих кристаллизационных трещин в сварном соединении. Подсолидусные трещины возникают в интервале температур второго минимума пластичности, расположенного ниже температуры солидуса. Сварной шов вследствие неравновесного процесса кристаллизации пересыщен дефектами кристаллической решетки, в том числе и вакансиями, которые при растяжении активно перемещаются к границам, расположенным перпендикулярно действующим усилиям. Такие скопления вакансий сильно ослабляют границы и создают предпосылки для возникновения зародышей разрушения. Необходимые условия для возникновения разрушения — межзе-ренная деформация или проскальзывание, возникающие как следствие воздействия термодеформационного цикла сварки. О наличии такого вида деформации свидетельствуют смещения кристаллизационных слоев на поверхности сварных швов (рис. 12.46). Смещения нередко сопровождаются значительной пластической деформацией в пограничных областях. Если по гра-  [c.481]

Условия пластического течения в поверхностных слоях изделия отличаются от условий в объеме из-за охлаждения наружных слоев инструментом. Эти условия реализуются при деформации металла, нагретого на высокую температуру (горячая деформация) холодным инструментом или нагретым на температуру ниже температур деформируемрго металла.  [c.395]

Это объясняется тем, что явления упрочнения, рекристаллизации, полигонизации, сопровождающие горячую пластическую деформацию, определяют уровень напряжений. Соотношение между этими процессами зависит от истории процесса нагружения, поэтому отсутствует однозначное соответствие между напряжением и деформацией при данных значениях мгновенной скорости деформации и температуре. Например, пусть образцы растягиваются так, что конечная величина деформации еа и скорость деформации ег в конечный момент во всех случаях одни и те же (рис. 259). В первом случае образец деформируется с малой скоростью ei так, что при достаточно высокой температуре одновременно с упрочнением происходит полное разупрочнение, т. е. процесс является практически равновесным. При этом сопротивление деформации остается постоянным, равным Оз]. Доведя деформацию до величны еь скачком изменим скорость деформации до ег (см. рис. 259, кривая I). В другом случае при постоянной скорости деформации ег образец растянули до дефор-мации ег (см. рис. 259, кривая 2). В этом случае процесс упрочнения является резко выраженным и сопротивление деформации 0sj>0 i при тех же величинах и ег.  [c.481]


Смотреть страницы где упоминается термин Деформация пластическая горячая : [c.608]    [c.145]    [c.132]    [c.17]    [c.35]    [c.41]    [c.284]    [c.154]    [c.177]    [c.47]   
Физические основы пластической деформации (1982) -- [ c.513 ]



ПОИСК



Влияние холодной и горячей пластической деформации на структуру и свойства металла

Горячая пластическая деформация и термическая обработка

Деформация горячая

Деформация пластическая

Пластическая деформаци

Пластическая деформация металлов и сплавов в горячем и холодном состоянии

Процесс пластической деформации металла в горячем состоянии

Холодная и горячая пластические деформации



© 2025 Mash-xxl.info Реклама на сайте