Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прокатка жидкая

Балка — вид проката. Балки применяются двух типов — двутавровые нормальные и широкополочные (рис. 2). Двутавровые нормальные балки имеют высоту от 80 до 600 мм, уклон внутренней поверхности полок составляет 14о/о. Широкополочные балки имеют высоту от 100 до 1000 мм, ширину полок до 400 Л1м полки параллельны или имеют уклон до 9 / Бесслитковая прокатка — прокатка жидкого металла, заливаемого в воронку, образуемую двумя вращающимися в противоположном направлении цилиндрическими валками (рис. 3). Попав в воронку, металл застывает, захватывается валками и деформируется, как и при обычной про- дольной прокатке.  [c.16]


Прокатка жидкая — бесслитковая прокатка.  [c.266]

Кроме катаной, для наплавки используют также ленту, изготовленную бесслитковой прокаткой жидкого металла и металлокерамическую.  [c.454]

Литую ленту (табл. 13-10) изготовляют бесслитковой прокаткой жидкого металла. Толщина ленты 0,8—1,0 мм с допуском 0,3 мм. Литая лента поставляется в рулонах в отожженном состоянии, она выдерживает изгиб на 180° на оправке радиусом 20 мм.  [c.721]

Одним из последних достижений советских литейщиков является разработка процесса производства гибкого чугунного листа прокаткой жидкого чугуна, которую правильнее было бы назвать производ-  [c.170]

Ледебуритные стали, имеющие в структуре первичные карбиды, выделившиеся из жидкой стали. В литом виде избыточные карбиды совместно с аустенитом образуют эвтектику — ледебурит, который при ковке или прокатке разбивается на обособленные карбиды и аустенит.  [c.360]

Все больше совершенствуется бесслитковая прокатка — получение проката непосредственно из жидкого металла, минуя операции отливки слитков и их горячей прокатки, а также ряд вспомогательных операций, В этом случае расплавленный в плавильной печи металл заливают в миксер, откуда он по наклонному закрытому желобу поступает в охлаждаемую коробку — кристаллизатор, — установленную перед валками прокатной клети. Кристаллизатор обеспечивает непрерывное, равномерное поступление металла в валки, где он обжимается и выходит в виде заданного профиля. Таким способом получают алюминиевую ленту толщиной 8— 12 мм.  [c.68]

Разработка комбинированных моделей индукционных нагревателей является наиболее высокой ступенью их математического моделирования. Такие модели могут быть двух- и более компонентными в зависимости от числа процессов, учитываемых при их построении. Практически общими для всех моделей являются электромагнитные и тепловые процессы. Другие процессы определяются назначением устройства и целью моделирования. Это могут быть процессы деформации нагретого металла при прессовании, прокатке, штамповке, процессы структурных превращений при термообработке и зонной плавке, гидродинамические процессы в жидком металле, процессы возникновения напряжений в металле и т. д.  [c.132]

Для холодной прокатки предпочтительнее однофазные латуни с содержанием цинка менее 30%, как обладающие большим запасом пластичности. Для предотвращения налипания меди и латуни на стальные валки применяют жидкую смазку (трансформаторное масло, керосин, веретенное масло и т. д).  [c.64]


Свинец улучшает обрабатываемость латуни резанием, но ухудшает обрабатываемость давлением. Горячая прокатка а-латуни с примесью 0,05 7а РЬ или более сопровождается растрескиванием слитка из-за наличия межкристаллитных прослоек жидкой фазы, содержащей свинец.  [c.179]

Если в качестве матрицы используется легкоплавкий металл, то композит обычно получают или жидкой пропиткой или совместной прокаткой листов и армирующей проволоки. Если же матрица должна быть из тугоплавкого металла, то композит можно изготовить методом порошковой металлургии. Композит, полученный методом порошковой металлургии, может обладать рядом недостатков, например повышенной пористостью и хрупкостью.  [c.55]

Поскольку в конструкциях резервуаров для хранения жидкого топлива используют толстые плиты, часто для увеличения производительности применяют сварку с высокой погонной энергией. Если погонная энергия при сварке слишком велика, то в зоне термического влияния сварных соединений имеет место склонность к образованию микропористости. Считается, что причиной микропористости является локальное оплавление границ зерен микропоры располагаются параллельно плоскости прокатки. Хотя микропоры вследствие их случайного распределения и малого размера (<1 мм в длину) вряд ли существенно влияют на величину разрушающего напряжения и на акустические характеристики, для улучшения условий ультразвукового контроля необходимо уменьшать микропористость.  [c.128]

Подшипники качения металлургического оборудования могут смазываться как густой, так и жидкой смазкой. При высоких скоростях и высоких температурах для эффективной смазки и охлаждения подшипников качения применяется жидкая смазка. Подшипники качения с внутренним диаметром свыше 150 мм, при числе оборотов в минуту свыше 500 (например, подшипники рабочих и опорных валков широкополосных станов горячей и холодной прокатки), во избежание перегрева рекомендуется смазывать жидким маслом от циркуляционной системы.  [c.20]

При монтаже систем жидкой смазки, пневматики, паропроводов и водопроводов низкого давления нецелесообразно применение соединений на трубной цилиндрической резьбе (ГОСТ 6357-52), так как они не обеспечивают необходимой плотности соединений даже при применении уплотнительных материалов (пакли и сурика) вследствие имеющих место при работе металлургического оборудования вибраций. Недопустимым является выполнение трубопроводов систем густой и жидкой смазки целиком на сварке (электрической дуговой и газовой). Сварка, безусловно, должна широко применяться при монтаже трубопроводов систем смазки металлургических цехов, но ее целесообразно использовать только в комбинации с фланцевыми и резьбовыми соединениями, позволяющими производить в случае необходимости разборку трубопровода. Примером выполнения трубопроводов на сварке, не позволяющей производить их демонтаж, являются трубопроводы смазочных систем слябинга, тонколистового непрерывного стана и цеха холодной прокатки завода Запорожсталь . Но на этих объектах чрезмерное применение сварки было вызвано большим недостатком соединительных частей. Такая вынужденная практика частично повторялась впоследствии и на других заводах. Учитывая необходимость очистки внутренней поверхности сварных швов, где это возможно, металли-  [c.171]

Задача повышения чистоты выплавляемой стали в специфических условиях завода (единичное машиностроение) решались в основном путем применения установок электрошлаковой разливки (ЭШР) и электрошлакового переплава (ЭШП), и также обработки жидкой стали синтетическими шлаками. Применение чистой стали имеет особое значение для производства валков холодной прокатки. Как показывают данные эксплуатации, стойкость последних при применении сталей ЭШП повышается в 1,3—  [c.236]


Плены — брызги жидкого металла, застывшие на поверхности слитка и раскатанные при прокатке в виде отслаивающихся с поверхности пленок толщиной до 1,5 мм (фиг. 161, г).  [c.386]

С помощью таких методов контроля можно осуществить проверку физико-химических свойств и характеристик, в том числе качества поверхности, геометрических размеров предметов неподвижных и движущихся (например, толщин ленты в процессе прокатки и др.), определение содержания жидких и газообразных веществ в емкостях и величины напряжений, действующих на конструкцию при эксплуатации контроль прочности составных конструкций и комбинированных материалов.  [c.257]

К основным методам получения биметаллов относятся наплавка жидкого металла на твердый слой холодная сварка под давлением диффузионная сварка электролитическое осаждение второго слоя специальные методы. Интенсивно развиваются процессы производства биметаллов методом совместной пластической деформации биметаллических заготовок в твердом состоянии (путем совместной прокатки, прессования, волочения).  [c.284]

Все современные способы производства стали завершаются получением жидкого металла. При любом способе производства к концу процесса значительное количество кислорода в стали содержится в виде закиси железа. Этот кислород необходимо удалить, иначе пластичность стали будет невысокой и сталь нельзя будет обрабатывать прокаткой, ковкой или прессованием.  [c.92]

В углеродистой стали сера взаимодействует с железом, в результате чего образуется сернистое железо, дающее с железом относительно легкоплавкую эвтектику, которая располагается по границам зерен. При температурах ковки, горячей штамповки и прокатки эвтектика находится в жидком состоянии. В процессе горячей пластической деформации по границам зерен образуются трещины.  [c.96]

Необходимость создания моноблочных деталей сложной формы, воспринимающих рабочие усилия в тысячи тонн и являющихся основой уникальных машин, приводит к появлению весьма крупных отливок. К такого вида отливкам относятся станины рабочих клетей прокатных станов, в частности тонколистовых станов холодной прокатки. Черновой вес такой станины достигает 132 т, а расход жидкого металла для заливки формы с прибылями и литниковой системой составляет примерно 180 т.  [c.88]

Неуклонное повышение требований, предъявляемых к качеству отливок и к производительности и экономичности процессов литья, привело к появлению, особенно в последние годы, большого количества новых способов литья получение отливок в оболочковых формах в формах, изготовленных по выплавляемым моделям в формах, уплотненных прессованием под большим давлением литье вакуумным всасыванием, непрерывное литье в кристаллизатор и без кристаллизатора (вытягивание из расплава) жидкая прокатка и жидкая штамповка литье выжиманием жидкого металла, литье под низким давлением и много других.  [c.148]

Смазка для прокатки труб в интервале температур 300— 500° С [3], имеющая следующий состав (в %) натриевая селитра 40, гидроокись кальция 10, серебристый графит 5, вода 45. Смазку наносят на трубную заготовку окунанием пакетов труб в ванну с кипящим составом. Перед подачей на стан трубы просушивают при температуре 150—200° С в течение 20—30 мин (до полного удаления влаги). В очаге деформации при температурах прокатки солевая составляющая смазки плавится, образуя жидкую фазу, в которой распределен равномерно по объему основной смазочный компонент смазки — графит. Кроме натриевой селитры, с целью получения смазок с различной температурой образования жидкой фазы [4], применяют также смеси калиевых и натриевых солей азотной и азотистой кислот. Иногда в качестве стабилизатора вместо гидроокиси кальция в смазку вводят химически осажденный карбонат кальция [5].  [c.143]

Влияние серы. Сера является вредной примесью в стали. С железом она образует химическое соединение FeS, которое практически нерастворимо в нем в твердом состоянии, но растворимо в жидком металле. Соединение Fe.S образует с железом легкоплавкую эвтектику с температурой плавления 988 " С. Эта эвтектика образуется даже ори очень малом содержании серы. Кристаллизуясь из жидкости по окончании затвердевания, эвтектика преимущественно располагается по границам зерна. При нагреве стали до температуры прокатки или ковки (1000—1200 °С) эвтектика расплавляется, нарушается связь между зернами металла, вследствие чего при деформации стали в местах расположения эвтектики возникают надрывы и трещины. Это явление носит название красноломкости (горячеломкость).  [c.133]

Бесслитковая прокатка (фиг. 227). Этим способом производится прокатка жидкого металла, заливаемого из ковша 1 через жолоб 2 в воронку 4, образуемую двумя вращающимися валками 3, охлаждаемыми водой. Попав в воронку, металл затвердевает, захватывается валками и деформируется, как и при обычной профильной прокатке.  [c.401]

Производительность стана Производственно-технич1 -ский показатель 266 Прокат 266 Прокатка 266 Прокатка жидкая 266 Прокат по минусовому допуску 266 Прокатный валок 267 Прокатный стан 276 Промышленный травматизм 276  [c.412]

В некоторых случаях для наплавки могут применяться ленты, изготовляемые безслитковой прокаткой жидкого металла, заполняющего клиновидный зев валков-кристал.тизаторов, или ленты, полученные прокаткой порошков, подаваемых из бункера в валки. Такие ленточные электроды имеют, как правило, относительно  [c.135]

Зональная ликвация — неоднородность состава стали в различных частях слитка. В верхней части слитка из-за конвекции жидкого металла содержание серы, фосфора и углерода у ели-, чнвается в несколько раз (рис. 2.9, г), а в нижней части — уменьшается. Зональная ликвация приводит к отбраковке металла вследствие отклонения его свойств от заданных. Поэтому прибыльную и подприбыльную части слитка, а также донную его часть при прокатке отрезают  [c.44]


Для получения аморфных металлов (металлические стекла) нужны скорости охлаждения порядка миллионов градусов в секунду. Такие скорости о.хлаждения достигаются при разбрызгивании мелких капель жидкого металла на хорошо отполированную поверхность быстро вращающегося холодного медного диска. Толщина пленки аморфного металла достигает нескольких микрометров (до 60 мкм) и ширины 200 мм или проволоки диаметром 0,5-20 мкм. Другой вариант - прокатка тонкой струи расплава между двумя массивными медными валиками, расплющиваюшими капли жидкого металла. При нагреве аморфный металл может реализовать свое стремление к кристаллизации и при достаточной подвижности атомов образуется кристаллическое строение.  [c.44]

Механика твердого тела, будучи одной из глав общей механики, изучает движение реальных твердых тел. Различие между твердыми телами, с одной стороны, жидкостями — с другой, иногда кажется интуитивно ясным (нанример, сталь и вода), иногда отчетливую границу провести бывает трудно. Лед представляет собою твердое тело, однако ледники медленно сползают с гор в долины подобно жидкости. При прокатке раскаленного металлического листа между валками прокатного стана металл находится в состоянии пластического течения и термин твердое тело по отношению к нему носит довольно условный характер. Неясно также, следует ли отнести к жидким или твердым телам такие вещества, как вар, битум, консистентные смазки, морской и озерный ил и т. д. Поэтому дать определение того, что называется твердым телом затруднительно, да пожалуй и невозможно. В последние годы наблюдается определенная тенденция к аксиоматическому построению механики без всякой апелляции к интуиции и так называемому здравому смыслу . Таким образом, вводятся различные модели, иногда чисто гипотетические, иногда отражающие основные черты поведения тех или иных реальных тел и пренебрегающие второстепенными подробностями. Для таких моделей можно установить некоторый формальный принцип классификации, позволяющий отделить модели жидкостей от моделей твер1а.ых тел, но эта классификация отправляется от свойств уравнений, но не тел как таковых. Поэтому термин механика твердого тела будет относиться скорее к методу исследования, чем к его объекту.  [c.16]

Сера. Как и фосфор, сера попадает в металл из руд, а также из печных газов - продукт горения топлива (502). Сера весьма ограниченно растворима в феррите и практически любое ее количество образует с железом сернистое соединение - сульфид железа Ре5, который входит в состав эвтектики, имеющей температуру плавления 988 С. Она располагается преимущественно по границам зерен. При нагреве стали до температуры прокатки, ковки (1000. 1200 °С) эвтектика расплавляется, нарушая связь между зернами. В процессе деформации в этих местах образуются надрывы и трешины. Это явление носит название красноломкости. Введение марганца в сталь уменьшает вредное влияние ееры, так как при введении его в жидкую сталь идет образование сульфида марганца, имеющего температуру плавления 1620 С  [c.81]

Методом пропитки в вакууме получали композиционный материал на основе алюминия, упрочненного нитевидными кристаллами окиси алюминия. Технологический процесс заключался в предварительном получении полуфабрикатов в виде ленты из проволочной сетки с нанесенными на нее после воздушной сепарации нитевидными кристаллами. Такая лента разрезалась на отрезки определенной длины, которые подвергались на специальной установке прокатке до необходимой толщины. На полученные таким образом листы методом катодного напыления наносили покрытие из нихрома (60% Ni —24% Fe—16% r) или из углеродистой стали. Листы с покрытием пропитывались жидким алюминием. Полученный таким образом материал, содержащий 20 об.% нитевидных кристаллов AI2O3, имел при 500° С предел прочности 21 кгс/мм и длительную, 100-часовую прочность при этой же температуре 8,4 кгс(мм . По данным работы [174] модуль упругости композиции алюминий — усы AljOa составлял 12 6000 кгс/мм2.  [c.100]

Достоинствами а-сплавов являются их отличная свариваемость плавлением, хорошая пластичность и высокая прочность при криогенных температурах (вплоть до температуры жидкого водорода), нечувствительность к упрочнягош,ей термической обработке и сравнительно высокое сопротивление ползучести. Недостатком а-сплавов (за исключением нелегированного титана) является низкая технологическая пластичность при комнатной температуре, что затрудняет прокатку тонких листов и требует подогрева материала и инструмента при листовой штамповке.  [c.183]

Непрерывный стан холодной прокатки труб позволяет повысить производительность труда в 5—10 раз в отличие от производительности имеющейся на обычных станах холодной прокатки. Эффективность капиталовложений при использовании непрерывного стана в 2 раза выше, чем для стана холодной прокатки труб валкового типа. Уже в течение нескольких лет на Московском трубном заводе работает стан непрерывного волочения (рис. 1). Стан осуществляет безоправочное волочение труб диаметром 8—26 мм с наибольшим усилием Q = 5 т и скоростью в пределах 0,6— 1,25 м/сек (40—-75 м/мин). Такой стан, осуществляя волочение труб в одну нитку, успешно заменит трехниточный стан с возвратно поступательным движением тележки. Стан отличается простотой конструкции, удобством обслуживания, малой занимаемой площадью. После волочения на таком стане трубы получаются прямыми, отпадает необходимость забивания и обрезания головок, имеет место экономия металла до 3%. В условиях данного завода на стане сокращено до семи технологических операций. На стане опробовано также волочение на длинной оправке труб с внутренней футеровкой и выступающими концами футеровки, удаление внутреннего грата с электросварных труб диаметром 20—22 мм. Конструктивно стан состоит из трех подающих клетей /—3 (рис. 1), установленных на общей раме 4. В каждой клети имеется две бесконечные цепи 5—7, между ближайшими ветвями которых происходит зажатие трубы призматическими звеньями. Каждая цепь перемещается ведущей звездочкой 8 при наличии неприводной звездочки 9 с другой стороны клети. Рабочие цепи перекатываются по неприводным роликовым цепям, которые опираются на подпружиненные опорные планки. Роликовую цепь и опорные планки конструктивно можно заменить неподвижными роликами. Зажатие трубы ближайшими ветвями рабочих цепей происходит с помощью нажимных балок, которые механизмом установки перемещаются симметрично относительно оси волочения. Две волоки размещаются в люнетах 10, смазка (жидкая циркуляционная) заливается на трубу перед волокой. Конструкция такого стана простая, так как отсутствует промежуточное звено — тянущая тележка. Цепи непосредственно зажимают и перемещают трубу во время волочения.  [c.158]

Присутствие серы в большом количестве приводит к образованию трещин при ковке, штамповке и прокатке в горячем состоянии. Это явление называется красноломкостью. В углеродистой стали сера взаимодействует с железом, в результате чего образуется сернистое железо FeS. Сернистое железо образует с железом отногительно легкоплавкую эвтектику, которая располагается по границам зерен. При температурах ковки, штамповки и прокатки эвтектика FeS—Fe находится в жидком состоянии. В процессе горячей пластической деформации по грани-  [c.41]

Анализ показал, что протечка связана с трещинообразова-нием в результате внутренних напряжений, вызванных наклепом при предварительной механической обработке (прокатке, гибке и пр.), а также сварке. Поверхностный слой труб парогенератора подвергается двоякому действию с одной стороны, он находится в контакте с жидким металлом и постепенно растворяется им, с другой, — поверхность стали подвержена разрушающему действию воды вследствие ее термической диссоциации при высоких температурах и диффузии водорода в стенку трубы. Большая растворимость водорода в железе, никеле и других металлах [I—3] с образованием гидридов и увеличением периода кристаллической решетки металла (при 400° G, например, достигается растворимость водорода в железе 138 см /100 г) вызывает появление напряженного состояния, повышает хрупкость, твердость, меняет другие механические свойства. Удаление водорода отжигом вызывает появление звездообразных трещин.  [c.269]


Каждый из перечисленных способов литья имеет определенное назначение и, следовательно, может быть использован для определенной номенклатуры отливок. Например, выжиманием жидкого металла можно получить тонкостенные отливки крупных габаритов панельного типа жидкой прокаткой — гладкие и профильные листы. Способ непрерывного литья может быть использован для получения прямолинейных профилей, труб и т. п. изделий. Отливки с повышенными точностью размеров и чистотой поверхности их можно получить при литье в специальные формы (изготовленные по выплавляемым моделям, уплотненные под высоким давлением, в оболочковые формы, в прессформы при литье под давлением и т. п.), особенности изготовления, сборки и заполнения которых определяют номенклатуру отливок по типу конструкции, весу и роду металла. Увеличить производительность труда, снизить себестоимость отливок и улучшить условия труда в литейных цехах возможно путем применения постоянных и полупостоянных форм, в частности, при 148  [c.148]

Известно, что структура п свойства отливок зависят главным образом от свойств жидкого металла и литейной формы, характера кристаллизации и затвердевания металла в форме. При этом разнородные структурные зоны отливки, состоящие из мелких, столбчатых и равноосных кристаллов, существенно различаются по плотности, прочности и степени физической неоднородности. Фасонные отливки и слитки, получаемые по существующим технологическим процессам, характеризуются наличием в мелкокристаллической зоне (поверхностном слое металла) большого количества газовых и неметаллических включений, трещин, пригара и других дефектов, резко ухудшающих физико-механические свойства отливок. При обжиге сднтков и отливок мелкокристаллический поверхностный слой металла окисляется и превращается в окалину (на слитках и крупных отливках толщина окисленного слоя достигает 5 мм). Поэтому в отливках предусмотрены специальные припуски металла на механическую обработку, а слитки из качественной легированной стали и специальных сплавов перед прокаткой подвергаются обдирке на станках. Таким образом, вследствие несовершенства технологии поверхностная мелкокристаллическая зона отливок и слитков в большинстве случаев превращается в отходы и безвозвратные потери производства.  [c.3]

Сравнительное изучение микрогеометрии плоской и орнаментированной поверхностей производили на образцах, полученных прокаткой, штамповкой, протяжкой, механической обработкой и кристаллизацией жидкого металла на подложках из сухих и влажных смесей и покрытий. Измерение шероховатости образцов осуществлялось на приборе Пертометр фирмы Гом-мельверке (ФРГ) и профилографе-профилометре модели 201. В тех случаях, когда суммарная величина микровыступов была значительной и не удавалось записать профилограмму с помощью безопорного датчика, волнистость регистрировали датчиком с опорой или интерферометром на двойном микроскопе ПИТ-4. Сопоставление ирофилограмм волнистости, полученных  [c.115]

При штамповке также учитывается припуск на последующую об- работку пакета, равный 0,5—0,8 мм. Удаление заусенцев с штампованных пластин проводят прокаткой между валками. Каждую иластину тщательно обезжиривают кипячением в дистиллированной воде в те- чение 4—5 мин. Затем обрабатывают в ванне следующим составом ща 1 л воды берут 10 г едкого натра, 25 г кальцинированной соды, 25 г тринатрийфосфата и 0,5 г жидкого стекла. Температура ванны равна 60—80 °С. Высушенные пластины подвергают отжигу. Пластины из никеля отжигаются в муфельных печах с доступом кислорода при температуре 700—800 °С. Загружают пластины в печь при температуре не выше 100 С нагрев производят со скоростью 150—200 °С в час. -Выдержка цри температуре 700—800 °С проводится в течение 2 ч, Юхлаждение идет постепенно со скоростью 150—200 С в час. При этом а пластинах получается хорошая оксидная пленка толщиной около  [c.122]


Смотреть страницы где упоминается термин Прокатка жидкая : [c.507]    [c.385]    [c.9]    [c.111]    [c.140]   
Краткий справочник прокатчика (1955) -- [ c.266 ]



ПОИСК



Литье методом жидкой прокатки

Прокатка



© 2025 Mash-xxl.info Реклама на сайте