Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силы близкого действия

Принятое предположение, что реактивное воздействие объема V2 на может быть заменено только системой сил, распределенных по поверхности О, обусловлено физическим представлением, что взаимодействия частиц являются силами близко-действия. В нелокальной теории упругости учитываются массовые силы взаимодействия отброшенной части тела с оставшейся.  [c.19]

Массовые и поверхностные силы. Массовый момент. Если рассматриваемая среда соприкасается с воздействующей на нее внешней средой, то на поверхности соприкосновения возникают силы близкого действия , называемые поверхностными, такой же природы, как и описанные выше.  [c.12]


Силы близкого действия 21  [c.662]

Поверхностные силы — это силы близкого действия. Они проявляются между частицами среды, находящимися на весьма близком (по-  [c.237]

Пусть, например, к брусу приложены перпендикулярно его оси две равные по модулю, но противоположно направленные силы Р, действующие весьма близко друг от друга (рис. 128, а). При достаточной величине этих сил произойдет срез — отделение левой части бруса от правой по некоторому сечению АВ.  [c.184]

Явление, при котором скорости точек тела за очень малый (близкий к нулю) промежуток времени т изменяются на конечную величину, называется ударом. Силы, при действии которых происходит удар, будем называть ударными силами Промежуток времени т, в течение которого происходит удар, назовем временем удара.  [c.396]

При частоте возмущающей силы, близкой к частоте свободных колебаний точки, наступает явление, называемое биениями. Полагая в уравнении (16.13) л-о = О и Хо = О, рассмотрим колебания материальной точки, вызываемые лишь действием возмущающей силы  [c.48]

Данная формулировка может показаться сомнительной откуда мы будем знать, что нет сил, действующих на тело Силы могут действовать на тело не только при непосредственном соприкосновении тел, но они могут действовать и на изолированное тело. Гравитационные или электрические силы могут играть важную роль даже и тогда, когда очень близко от данного тела нет других тел. Мы не можем быть уверены в отсутствии действия сил только потому, что никакие другие тела не соприкасаются или не находятся очень близко к данному телу. Но если  [c.79]

Прежде всего опишем движение Нептуна в системе К- Нептун движется вокруг Солнца по орбите, близкой к круговой, и поэтому практически все время находится на расстоянии 30 астрономических единиц от Солнца. Ускорение, которое он при этом испытывает, ему сообщает сила тяготения, действующая со стороны Солнца (возмущающим действием других планет в силу удаленности их друг от друга вполне можно пренебречь). Ускорение, сообщаемое Нептуну Солнцем, как раз равно тому центростремительному ускорению, которое должен испытывать Нептун, совершая по своей орбите один оборот примерно за 165 земных лет. Мы не будем вычислять это ускорение, а обратим только внимание на то, что оно в 30 раз меньше уско-  [c.333]

Но присутствие или отсутствие сил инерции в системе отсчета, движущейся с ускоре-нием относительно коперниковой, есть свойство локальное. Выбирая те или иные точки пространства, мы обнаружим, что в одних точках, лежащих в какой-либо одной области пространства, в данной системе отсчета присутствуют силы инерции, а в точках, лежащих в какой-либо другой области пространства, в той же системе отсчета силы инерции практически отсутствуют. Чтобы выяснить, почему это мон<ет происходить, вернемся к рассмотрению движения планет в системе 3, сопоставив результат, полученный для движения Нептуна, с картиной движения Марса. По-прежнему будем рассматривать случай, когда Солнце, Земля и Марс лежат на одной прямой (рис. 154), причем обе планеты находятся по одну сторону от Солнца (так называемое противостояние Марса). Пользуясь теми же методами радиолокации, мы обнаружим, что в системе 3 ускорение Марса примерно вдвое меньше, чем ускорение Нептуна. Сопоставляя расстояния планет от Солнца (Марс от Солнца находится на расстоянии в 1,5 раза большем, чем Земля) и сравнивая ускорения Нептуна и Марса с ускорением Земли а, мы найдем, что ускорение, сообщаемое Марсу Солнцем, составляет а/1,5 0,4а, в то время как ускорение, сообщаемое Солнцем Нептуну, составляет а/900. Вследствие этого, хотя силы инерции, действующие в системе 3, сообщают Нептуну и Марсу одинаковые направленные от Солнца ускорения, равные —а, НО слабая сила притяжения Солнца, действующая на далекий Нептун, уменьшает результирующее ускорение Нептуна лишь на доли процента, а большая сила притяжения Солнца, действующая на близкий Марс, уменьшает результирующее ускорение Марса почти вдвое.  [c.337]


В случае, когда тело А находится близко к телу отсчета (Земле), сила инерции в системе 3 и сила тяготения Солнца почти равны по величине, и так как они направлены прямо противоположно, то результирующая силы инерции и силы тяготения близка к нулю. Наоборот, когда тело А находится очень далеко от тела отсчета, то сила тяготения, действующая на тело А, очень мала и на тело А действует сила, почти равная силе инерции —та, где а — ускорение тела отсчета (Земли) в коперниковой системе отсчета.  [c.338]

Картину полного обтекания мы получили в предположении, что силы вязкости в жидкости отсутствуют. Если же от этого предположения отказаться, то картина обтекания тел существенно изменяется. Как было показано в 125, слой вязкой жидкости, прилегающий к твердой стенке, прилипает к ней. Следующие слои потока скользят друг относительно друга с возрастающей скоростью, вследствие чего между слоями жидкости возникают силы вязкости.,При этом на каждый слой жидкости со стороны соседнего слоя, более удаленного от стенки, действует сила вязкости в направлении потока, а со стороны слоя, более близкого к стенке, — сила вязкости, направленная навстречу потоку. В результате наряду с силами вязкости, действующими между соседними слоями жидкости, возникают также силы трения, действующие на поверхность обтекаемого тела со стороны прилегающего к ней слоя жидкости. Результирующая этих сил трения называется сопротивлением трения.  [c.547]

В реальных системах помимо такой восстанавливающей силы всегда действуют и силы другого типа, прежде всего силы трения. Если они достигают значительной величины, то их влияние может существенно нарушить гармоничность колебаний. Но если эти силы малы, то для тела, обладающего одной степенью свободы, малые колебания около положения устойчивого равновесия всегда близки к гармоническим.  [c.590]

Рассмотрим еще один пример решения Файлона — действие на балку-полосу трех сил, близких к сосредоточенным (рис. 4.28). Они соответствуют действию на балку силы Р и опорных реакций по PI2 (рис. 4.29). Сила считается равномерно распределенной ш длине  [c.100]

Характер зависимости потенциальной энергии взаимодействия молекул от расстояния между ними представлен на рис. 1.14. При небольших давлениях, т. е. при больших расстояниях между молекулами газа, силы притяжения, действующие между ними, очень малы и собственный объем молекул пренебрежимо мал по сравнению с объемом, занимаемым газом. ЭтИ УСЛОВИЯ ОЧеНЬ бЛИЗКИ К условиям, принимаемым при выводе уравнения (1.2), а поэтому при очень малых давлениях свойства всех реальных газов стремятся к свойствам идеального газа. В г, р-диа-грамме этот факт находит свое отражение в том, что все изотермы при уменьшении давления стремятся к линии г= =1, соответствующей идеальному газу, и в пределе при р=0 все изотермы приходят в точку 2=1.  [c.22]

Следует иметь в виду, что принадлежность к данной графе классификации определяется как конструкцией, так и характером действующих сил. Близкие по конструктивному оформлению сопряжения могут принадлежать к различным категориям. Например, для колодочного тормоза (рис. 86) при жестком закреплении колодок на рычаге сопряжение будет принадлежать к / типу, так как направление возможного сближения поверхностей при их износе определяется поворотом рычага относительно оси О а-При самоустановке колодок данное сопряжение будет относиться ко II типу сопряжений (рис. 86, б). В первом случае форма изношенной поверхности колодки будет определяться заранее известной траекторией ее движения — поворота относительно оси Оа, во 2-м случае — самоустановка под действием сил трения которые создают момент трения Неравномерность износа  [c.279]

О форме струи при современных средствах анализа можно сказать лишь очень мало. Это неудивительно, так как уже в случае, когда силы не действуют, можно найти форму струй единственно только в предположении, что поток плоско-параллельный. Предположим, что размеры поперечного сечения струи бесконечно малы тогда можно рассматривать давление, которое на поверхности струи, вообще, равно атмосферному, как постоянное для всей струи, кроме части, лежащей бесконечно близко к отверстию, где компоненты скорости изменяются бесконечно быстро. Возьмем часть струи, ограниченную двумя бесконечно близкими поперечными сечениями тогда отсюда можно заключить, что она движется как свободная материальная точка под действием силы тяжести, т. е. по параболе с вертикальной осью. Если рассматривать движение как установившееся, то струя есть траектория, которую описывают все частицы, т. е. парабола.  [c.289]


Утомление резины. Пребывание резины под постоянной растягивающей нагрузкой или в условиях постоянной деформации растяжения ведёт к снижению прочности материала, а при достаточной длительности действия растягивающей силы, близкой к пределу прочности, приводит к разрыву образца (статическое утомление). Длительность сопротивления резины статическому утомлению зависит от величины напряжения и температуры, она уменьшается с увеличением напряжения и повышением температуры.  [c.318]

Проводимые в течение нескольких лет в СССР в институте ЭНИМС исследования коэффициентов трения различных антифрикционных материалов показали, что эти коэффициенты имеют близкие значения. На горизонтальные плиты устанавливали специальную подвижную плиту, нагружаемую переменными грузами (утяжелителями), соединенную канатиком с продольным суппортом токарного станка, перемещающимся с очень малой скоростью (12 мм/мин). Силу трения, действующую на подвижную плиту, измеряли динамометром, соединяющим две части канатика постоянная динамометра 17,9 кГ/мм. Рабочие поверхности были зачищены, но не притерты. Поверхность соприкосновения направляющих составляла 16 см , удельное давление 0,6  [c.208]

В центробежных и диагональных ступенях, а также в осевых ступенях со значительным изменением диаметра втулки или корпуса в пределах рабочего колеса поверхности тока существенно отличаются от цилиндрических. В этих случаях для определения Lu следует использовать теорему Эйлера о моменте количества движения. Применим эту теорему к кольцевому объему воздуха, заключенному между поверхностями тока аЬ и а Ь и сечениями 1—1 и 2—2 (рис. 2. 11). Поверхности тока будем считать осесимметричными. Аэродинамические силы, возникающие на элементах всех лопаток рабочего колеса, расположенных внутри выделенного кольцевого объема, создают относительно оси вращения колеса некоторый суммарный момент АМл, воздействующий на воздушный поток. Все силы давления, действующие на рассматриваемую контрольную поверхность, являются центральными (проходят через ось вращения колеса). Поэтому, если пренебречь незначительной разностью моментов сил внутреннего трения воздуха на близких друг к другу поверхностях аЬ и а Ь, то приложенный к потоку со стороны лопаток момент AM л должен быть равен согласно (1.23) приращению момента количества движения потока в единицу времени, т. е.  [c.51]

В коротких балках (Ijh S), а также в балках обычной длины, но нагруженных большими по величине сосредоточенными силами, близко расположенными к опорам (рис. 7.48), изгибающий момент М 6 может оказаться сравнительно небольшим, а поперечная сила по абсолютной величине значительна. В этих случаях необходимо производить проверку по наибольшим касательным напряжениям т б, которые возникают в сечении балки, где действует Q . Условие прочности по наибольшим касательным напряжениям можно записать в виде  [c.152]

Во всех случаях необходимо учитывать, что в экспериментах сферы падают в сосуде (обычно цилиндрическом), а не в безграничной среде. Чтобы получить точные результаты, необходимо учитывать наличие ограничивающей поверхности. Особенно это важно в случае, когда частицы удалены друг от друга, так как влияние стенок в этом случае может быть значительным по сравнению с взаимодействием частиц. Если частицы находятся близко друг от друга (расстояние между их центрами меньше 2—3 диаметров), то их можно рассматривать как одну частицу [5] и поправочный множитель брать таким же, как для сферы, падающей в цилиндрическом сосуде (гл. 4). При этом предполагается, что расстояние между центрами частиц мало по сравнению с диаметром цилиндра. Однако по мере того как в дальнейшем частицы расходятся, их воздействия на течение должны рассматриваться раздельно [18]. Таким образом, если в цилиндре падают две сферы а и Ь, находящиеся в различных положениях, то сопротивление сферы а будет обусловлено сложением сопротивлений, соответствующих четырем полям скорости. В их число входят исходная стоксова скорость сферы а и первое отражение этого поля скорости от стенки цилиндра. Кроме того, сфера Ъ возмущает движение сферы а двояким образом во-первых, путем прямого отражения своего собственного стоксова поля и, во-вторых, путем отражения этого поля от стенки цилиндра и затем к сфере а [18]. Эти взаимные влияния рассматриваются несколько подробнее в гл. 7 и 8. Вообще если сила сопротивления, действую-  [c.315]

Если на частицы жидкости действуют только сила тяжести и давление (т. е. жидкость предполагается невязкой. Прим. ред.), то безвихревое движение никогда не может стать вихревым. В качестве довольно грубого, ориентировочного правила можно считать, что течения, близкие к безвихревым, возникают в реальных жидкостях, если главными силами, под действием которых происходит движение, являются силы давления и тяготения.  [c.134]

В МГД-генераторе следует различать пограничные слои на электродной и изоляторной стенках. Изоляторная стенка обычно охлаждается, и только внешняя часть пограничного слоя является электропроводной и подвергается действию объемных сил. С другой стороны, температура электродов близка к температуре газа. Ток, индуцированный ядром потока, течет через пограничный слой, нарастающий на электродных стенках. Сила Лоренца, действующая на внутренние слои пограничного слоя, будет тормозить газ и может вызвать отрыв пограничного слоя от стенки электрода.  [c.178]

Амплитуда вынужденных колебаний зависит не только (и не столько) от величины действующей силы, но и от ее частоты. Амплитуда вынужденных колебаний очень резко возрастает, если частота внешней силы близка к частоте собственных колебаний.  [c.439]


В чем неточность нашего предположения В том, что такая средняя скорость соответствует равноускоренному движению, т.е. движению под действием постоянной силы, а действующая на маятник тангенциальная составляющая силы тяжести (см. рис. 1.2) изменяется во времени, поскольку уз = уз(<). К сожалению, из элементарных соображений более близкого-к действительному значения г р не получить. При сделанных допущениях  [c.50]

Когда на ровном участке скользкой дороги автомобиль движется с высокой скоростью, под его колесами действует значительная продольная сила, близкая по величине к силе сцепления. Если колеса автомобиля попадут при этом на особо скользкий участок дороги или получат небольшой боковой толчок от какой-либо неровности либо водитель слегка, но быстро повернет руль, т. е. если внезапно поперечная сила увеличится, то может начаться занос.  [c.599]

Нетрудно доказать, что и в пространстве направление мгновенной оси будет все время очень близко к первоначальному направлению оси вращения. Для этого рассмотрим направление вектора моментов количеств движения. До толчка этот вектор совпадал с первоначальным направлением той главной оси тела, около которой происходило вращение. Толчок мог изменить направление вектора моментов количеств движения в пространстве лишь бесконечно мало. После толчка внешние силы не действуют, следовательно, положение указанного вектора неизменно. Но он получается как равнодействующий из трех моментов по главным осям ЗхР, З д, УдГ, следовательно, направление равнодействующей этих трех векторов может лишь бесконечно мало отличаться от первоначальной оси вращения, а так как Уз и У3Г—величины бесконечно малые, то направление скорости р, а следовательно, и мгновенной оси, может лишь бесконечно мало отличаться от первоначальной оси вращения.  [c.271]

Во-вторых, силы близкого действия, непосредственно связанные с молекулярным строением вещества (например, силы поверхностного натяжений) и проявляющиеся на протяжении tohkoi-o слоя, примыкающего к границе жидкого объема. Ввиду малости глубины проникновения по сравнению с линейными ра мерами жидкой noflepxHO TH величину такой силы считают пропорциональной площади поверхности <54 Поэтому силы близкого действия называют поверхностными. Величина и направление поверхностной силы в точке может зависеть от ориентации поверхности в пространстве. Элементарную поверхностную силу запишем в следующем виде  [c.10]

Но явления приливов, вызванных Солнцем, проще поддаются рассмотрению, чем явления приливов, вызванных Луной. Обусловлено это следующими обстоятельствами. Для того чтобы объяснить происхождение горбов , нам нужно рассмотреть движение воды относительно Земли, т. е. движение воды в системе отсчета, связанной с Землей (но невращающейся , как было отмечено выше). Поскольку мы рассматриваем приливы, вызываемые Солнцем, мы для упрощения задачи можем вообще не учитывать влияния Луны на движение Земли. В результате мы получим воображаемую картину приливов, вызываемых Солнцем в том случае, если бы Луна вообще отсутствовала. Тогда Земля движется по своей орбите (близкой к круговой) только под действием сил тяготения Солнца. Характер сил инерции, действующих в этом случае в системе отсчета, связанной с Землей, был рассмотрен в 77, и мы прямо будем пользоваться результатами этого рассмотрения. Если же мы рассматривали бы приливы, вызываемые Луной, то мы должны были бы учитывать и то влияние, которое оказывает Луна  [c.393]

Металлические кристаллы. Внешние валентные электроны в атомах металлов связаны относительно слабо. При сбразованни твердого состояния атомы располагаются настолько близко друг от друга, что валентные электроны приобретают способность покидать свои атомы и свободно перемеш,аться внутри решетки. Такое обобществление электронов приводит к однородному распределению их в решетке металла. Связь возникает вследствие взаимодействия положительных ионов решетки с электронным газом электроны, находящиеся между ионами, стягивают их, уравновешивая силы отталкивания, действующие между самими ионамп.  [c.20]

Пусть точки Ао и А расширенного координатного пространства отвечают начальному и конечному положениям системы (рис. 165). Если точки и А достаточно близки, то действие S на прямом пути имеет минимум. Выясним, насколько близкими должны быть точки Ао и Ai, чтобы на прямом пути действие оста-валось минимальным . На прямом пути AqAi первая вариация 8S действия по Гамильтону всегда равна нулю. Если точка А близка к точке Aq, то в силу минимальности действия вторая вариация 8 S на прямом пути положительна . Будем удалять точку А от точки А .  [c.479]

Отметим, что проектирование систем активной амортизации сопряжено с использованием достаточно мощных источников энергии и синтезом цепей управления, реализующих нужные амплитудные и фазовые характеристики- Реальные датчики сил или перемещений (скоростей, ускорений), усилители и вибраторы являются сложными колебательными системами со многими резонансами. Поскольку при переходе через резонансную частоту сдвиг фаз между силой и смещением изменяется на величину зт, фазово-частотные характеристики реальных систем амортизации являются сложными и трудно контролируемыми функциями, изменяющимися в интервале [О, 2я]. В практических условиях сделать их близкими к требуемым характеристикам удается только в ограниченной полосе частот. Вне этой полосы могут иметь место нежелательные фазовые соотношения, приводящие к. увеличению виброактивности машины it дaн e к самовозбуждению всей системы. Пусть, например, в соотношении (7.35) коэффициент Kj принимает положительное значение. Это значит, что на некоторых частотах фазовая характеристика цепей обратной связи принимает значение О или 2п. На этих частотах сила /а оказывается в фазе с силой /2, общая сила /ф, действующая на фундамент, увеличивается и виброизоляция становится отрицательной. Вместо отрицательной обратной связи на этих частотах имеет место по-лолштельная обратная связь. Если при этом коэффициент Kj бу-  [c.242]

Увеличение площади контакта, сопровождаемое одновременным появлением сил прилипания и отклонений от закона Амонтопа, может наблюдаться не только в результате пластичных деформаций внешней формы обоих тел вблизи точки контакта, но и вследствие присущей атомам и молекулам всех тел подвижности. Подвижность атомов металлов, особенно заметная при приближении к температуре плавления, приводит как бы к холодному свариванию металлов, когда из атомов, мигрирующих вдоль поверхностей металлов по направлению к зоне контакта, образуются своего рода мостики. Такая направленная миграция атомов, в других условиях двигающихся совершенно беспорядочно, без какого-либо предпочтительного направления в пространстве, объясняется силами притяжения, действующего между любыми атомами на достаточно близких расстояниях. Эти силы притяжения особенно велики там, где накладывается одно на другое, взаимно усиливаясь, притяжение обоих соприкасающихся тел, т. е. вблизи точек контакта.  [c.171]

Сколь ни велика скорость хода надводного корабля (легкого крейсера или миноносца), преобладающее действие на него оказывают гидростатические давления воды, определяющие основную часть архимедовой силы поддержания. Подобная особенность характерна для так называемых водоизмощающих судов. На глиссирующих судах благодаря своеобразной форме их корпуса и относите.ть-но большой скорости хода поддерживающая сила создается в 0СН0ВН0Л1 гидродинамическими давлениями, пропорциональными при прочих одинаковых условиях квадрату скорости. Так как из условий равновесия равнодействующая всех сил давления воды должна быть равна по величине результирующей всех сил тяжести, действующих на судно, и нанравлена прямо противоположно ей, то глиссер выходит из вода и по мере увеличения хода соответственным образом изменяет угол атаки , образованный плоскими кормовыми участками днища и горизонтальной плоскостью. При этом носовая оконечность, отличающаяся большим развалом шпангоутов и пологой формой образования днища, оказывается над водой и подвергается действию больших усилий от удара волн так как эти усилия имеют направление, близкое к вертикальному, то они могут быть опасными не только для местной прочности корпуса катера, но и для его общей продольной прочности. Удары днища катера о волны могут быть настолько большими и резкими, что в некоторых случаях именно они ограничивают возможную наибольшую скорость катера при данном состоянии моря .  [c.59]


Границы применимости линейной теории и значения параметров. Сделанное выше заключение о применимости линейной теории колебаний к исследованию переходных режимов движения поездов подтверждаегся тем, что скорость а упругой волны в поездах, вагоны которых оборудованы как пружинно-фрикционными, так и резинометаллическими поглощающими аппаратами, не зависит от величины действующих усилий. Только при силах, близких к начальной затяжке аппаратов, система ведег себя как нелинейная с мягкой характеристикой.  [c.428]

Адсорбция (сорбция) образовавшихся активных атомов поверхностью насыщения. Адсорбция является сложным процессом, который протекает на поверхности насыщения нестационарным образом. Различают физическую (обратимую) адсорбцию и химическую адсорбцию (хемосорбцию). При химико-термической обработке эти типы адсорбции накладьшаются друг на друга. Физическая адсорбция приводит к сцеплению адсорбированных атомов насьпцающего элемента (адсорба-та) с образовываемой поверхностью (адсорбентом) благодаря действию Ван-дер-Ваальсовых сил притяжения, и для нее характерна легкая обратимость процесса адсорбции — десорбция. При хемосорбции происходит взаимодействие между атомами адсорбата и адсорбента, которое по своему характеру и силе близко к химическому.  [c.469]

Передний угол. Для облегчения процесса стружкообразова-ния резец затачивается под углом +у. Но чем больше значение переднего угла у, тем меньше угол заострения Р, что делает режущую кромку резца недостаточно прочной. Поэтому при обработке твердых металлов, когда в процессе резания на резец будут действовать значительные силы, при обработке прерывистых поверхностей, когда имеет место удар, а также при обработке хрупких металлов (серые чугуны), когда вследствие сыпучей стружки надлома нагрузка на резец сосредоточена на участке, близко расположенном к режущей кромке, в целях упрочнения режущей кромки передний угол приходится уменьшать. Чем мягче обрабатываемый металл, тем меньшие силы будут действовать на резец, тем, следовательно, большим может быть взят передний угол +у.  [c.145]

Подводя итоги, мы приходим к выводу, что развитие теории упругости к концу XVJII в. продолжало значительно отставать от уровня развития гидромеханики. Если в гидромеханике трудами Клеро, Даламбера, Эйлера и Лагранжа уже был создан единый аналитический аппарат дифференциальных уравнений в частных производных, описывающих движение идеальной жидкости, то в теории упругости в этот период решаются лишь отдельные частные задачи статики и динамики твердых тел, в которых учитываются упругие свойства материала. Однако до создания обобщающих теорий не дошли. Аналитический аппарат дифференциальных уравнений был применен только к рассмотрению одномерных задач теории упругости и не дал удовлетворительных результатов при рассмотрении двумерных задач, Б теории упругости важные результаты были получены при изучении внутренних сил. Было установлено, что внутренние силы могут действовать не только по нормали к сечению, по и под любьш углом к нему, в том числе и по касательной. Все это очень близко подводило к общему понятию напряжения (в работах Кулона),  [c.189]

В случае волокнистых однонаправленных композитных материалов, армированных короткими волокнами (волокнами конечных размеров в продольном направлении), взаимодействие между соседними волокнами может реализоваться как в плоскости поперечного сечения (между соседними параллельными волокнами), так и в продольном направлении (между соседними волокнами в направлении действия сжимающих напряжений). Исследование таких проблем в рамках трехмерной линеаризированной теории устойчивости деформируемых тел существенно усложняется, так как в этом случае получаем неоднородное (двухмерное или трехмерное) докритическое состояние вполне очевидно, что в рассматриваемых задачах конкретные результаты можно получить лишь при помощи современных численных методов. При вышесказанном подходе рассматриваемая проблема начала разрабатываться лишь в последние два года. Так, в случае волокнистых однонаправленных композитных материалов, армированных короткими волокнами, при малой концентрации наполнителя приходим к простейшей эталонной задаче об устойчивости одного короткого волокна (волокна конечных размеров в продольном направлении) в бесконечной матрице при сжатии па бесконечности усилиями постоянной интенсивности, направленными вдоль волокна. Заметим, что в случае одного короткого волокна также получаем задачу с неоднородным докри-тическим состоянием конкретные результаты даже в этой эталонной простейшей задаче, характерной для рассматриваемой проблемы, получаются с привлечением только численных методов. При вышеизложенной постановке в рамках плоской задачи при моделировании матрицы и волокна линейно-упругим сжимаемым телом ряд конкретных результатов изложен в [8, 9]. Настоящую статью можно рассматривать как продолжение исследований [8] для однонаправленных волокнистых композитных материалов, армированных короткими волокнами, применительно к материалам с малой концентрацией наполнителя, когда можно выделить два соседних волокна (вдоль направления действия сжимающих напряжений), для которых (в силу близкого их размещения) необходимо учитывать взаимодействие двух волокон при потере устойчивости. Исследование проводится также в рамках плоской задачи при моделировании матрицы и волокон линейно-упругим сжимаемым телом при этом приводится сравнительно краткая информация о применяемом численном методе решения задач и его реализации, поскольку более подробно указанные вопросы могут быть изложены в публикации в другом издании. Основное внимание в настоящей статье уделено анализу полученных закономерностей о взаимовлиянии двух коротких волокон в матрице при потере устойчивости  [c.332]


Смотреть страницы где упоминается термин Силы близкого действия : [c.221]    [c.227]    [c.291]    [c.338]    [c.580]    [c.70]    [c.49]    [c.215]    [c.845]   
Трехмерные задачи математической теории упругости и термоупругости Изд2 (1976) -- [ c.21 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте