Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача динамики точки втора

Задача динамики точки вторая 111—113  [c.332]

ВТОРАЯ ОСНОВНАЯ ЗАДАЧА ДИНАМИКИ ТОЧКИ  [c.244]

Вторая задача динамики точки  [c.296]

Ко второй (или обратной) задаче динамики точки относятся те задачи, в которых определяется движение точки по заданным силам. Силы, действующие на точку, могут быть как постоянными, так и заданными функциями времени, координат и скорости точки, т. е.  [c.296]

Если же решают вторую основную задачу динамики точки и задан вектор силы, но требуется определить радиус-вектор как функцию (54) от времени, то для решения задачи нужно интегрировать уравнение (125).  [c.261]


Из уравнений движения мы выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (58) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки л-, у и z как  [c.262]

Из уравнений движения выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (5) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки х, у, и z как функции времени, решение сводится к интегрированию трех совместных дифференциальных уравнений, где независимым переменным является время.  [c.116]

Если решают первую основную задачу динамики точки и положение точки определено в векторной форме, т. е. дан радиус-вектор г как некоторая векторная функция времени 7 = 7 (/), то надо определить по (18 ) ускорение й, выражающееся второй производной от радиуса-вектора точки по времени /, и умножить его на массу точки т. Тогда получим следующее выражение основного закона динамики  [c.185]

При решении второй задачи динамики точки необходимо придерживаться следующего порядка  [c.217]

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ДВИЖЕНИЯ СВОБОДНОЙ МАТЕРИАЛЬНОЙ ТОЧКИ К РЕШЕНИЮ ВТОРОЙ ЗАДАЧИ ДИНАМИКИ ТОЧКИ  [c.456]

Давая в выражениях (4) различные значения произвольным постоянным, можно сделать несколько неожиданный на первый взгляд вывод одна и та же сила может сообщить материальной точке не строго определенное движение, а целый класс разнообразных движений. По-видимому, присутствие шести произвольных постоянных интегрирования в общем решении (4) объясняется тем, что, зная массу движущейся точки и действующую на эту точку силу Р, мы не указали, из какого положения началось движение точки и какова была ее скорость в начальном положении, или, как говорят, в начальный момент времени 0. Таким образом, чтобы с помощью уравнений (6, 88) получить конкретное решение второй задачи динамики точки, надо, кроме массы точки и действующей на эту точку силы, знать еще, в каком положении находится точка в начальный момент (начальное положение) и какую она в этот момент имеет скорость (начальная скорость). Величины, определяющие значения начального момента радиуса-вектора Го начального положения точки и начальной скорости Vo, называются начальными условиями движения точки. В декартовых осях координат начальные условия в случае криволинейного движения точки задаются в виде  [c.458]


Вторая формула Бине позволяет определить силу для заданной траектории движения г = г(ц>), т. е. решить задачу, аналогичную первой основной задаче динамики точки.  [c.428]

Сформулируйте первую и вторую задачи динамики точки,  [c.141]

В основе М. лежат три закона Ньютона. Первые два справедливы по отношению к т, н. инерциальной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим — для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются закона, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таковы Дука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, к-рым подчиняются др. среды, см. в ст. Пластичности теория. Реология.  [c.127]

Как формулируются прямая и обратная задачи динамики точки Какую при этом роль выполняет второй закон Ньютона Почему его называют основным уравнением динамики Что представляет собой уравнение движения Что такое закон движения  [c.104]

В первые годы основное содержание курса было посвящено изложению общей теории движения тел переменной массы (уравнение Мещерского, задачи Циолковского, основные теоремы, уравнения типа Эйлера, Лагранжа и Гамильтона, частные задачи) позднее (с 1945/46 учебного года) в курс были включены вариационные задачи динамики точки переменной массы в беге времени значение оптимальных режимов полета все возрастало, и в шестидесятых годах курс получил сильный крен в эту сторону. Некоторое представление о моих взглядах на механику тел переменной массы и значении этого раздела современной механики для авиа- и ракетостроения можно получить из второй части моего курса теоретической механики.  [c.215]

В силу постоянства левых частей равенств функции г 5ь 1152,. .., 1156, зависящие от координат движущейся точки, проекций скорости и, вообще говоря, времени, обладают тем свойством, что при движении точки сохраняют свои значения неизменными. Они называются первыми интегралами движения и выражают законы сохранения некоторых величин С. Равенства (6.11) показывают, что существует шесть независимых первых интегралов. Любая функция первых интегралов также будет (зависимым) интегралом движения. Если все шесть первых интегралов известны, то из них можно (без интегрирования) получить полное решение второй задачи динамики точки. В самом деле, решая уравнения (6.11) относительно х, у, г, х, у, г, получим кинематические уравнения типа х = х(Сь Сг,. .., Се, О, что при заданных Сь Сг,. .., Се дает частные решения, а при произвольных — общий интеграл исходных уравнений.  [c.86]

Если интегрирование дифференциальных уравнений движения точки сводится к квадратурам, как в приводимых ниже примерах, то будем вычислять эти квадратуры в соответствующих пределах, т. е. будем вычислять определенные интегралы, причем нижние пределы интегрирования определяются начальными условиями движения точки. Тогда отпадает необходимость определения произвольных постоянных. Заметим, что почти во всех задачах, помещенных в сборнике И. В. Мещерского и относящихся ко второй основной задаче динамики точки, имеются два типа дифференциальных уравнений или уравнения с разделяющимися переменными, или линейные уравнения второго порядка с постоянными коэффициентами.  [c.244]

В основе М. лежат три закона Ньютона. Первые два справедливы по отношению к т. н. инерциальной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим — для  [c.415]

Задачи динамики. Для свободной материальной точки задачами динамики являются следующие 1) зная закон движения точки, определить действующую на нее силу (первая задача динамики ) 2) зная действующие на точку силы, определить закон движения точки (вторая, или основная, задача динамики).  [c.183]


Для несвободной материальной точки, т. е. точки, на которую наложена связь, вынуждающая ее двигаться по заданной поверхности или кривой, первая задача динамики обычно состоит в том, чтобы, зная движение точки и действующие на нее активные силы, определить реакцию связи. Вторая (основная) задача динамики при несвободном движении распадается на две и состоит в том, чтобы, зная действующие на точку активные силы, определить а) закон движения точки, б) реакцию наложенной связи.  [c.183]

Решение задач. -Уравнения (33) или (34) позволяют, зная как при движении точки изменяется ее скорость, определить импульс действующих сил (первая задача динамики) или, зная импульсы действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их импульсы. Как видно из равенств (30) или (31), это можно сделать лишь тогда, когда силы постоянны или зависят только от времени.  [c.203]

Таким образом, уравнения (33), (34) можно непосредственно использовать для решения второй задачи динамики, когда в задаче в число данных и искомых величин входят действующие силы, время движения точки и ее начальная и конечная скорости (т. е. величины F, t, Vo, Vi), причем силы должны быть постоянными или зависящими только от времени.  [c.203]

Решение задач. Теорема об изменении кинетической энергии [формула (52)1 позволяет, зная как при движении точки изменяется ее скорость, определить работу действующих сил (первая задача динамики) или, зная работу действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их работу. Как видно из формул (44), (44 ), это можно сделать лишь тогда, когда силы постоянны или зависят только от положения (координат) движущейся точки, как, например, силы упругости или тяготения (см. 88).  [c.215]

Основная задача динамики в обобщенных координатах состоит в том, чтобы, зная обобщенные силы Qi, Qa, . и начальные условия, найти закон движения системы в виде (107), т. е. определить обобщенные координаты qu q ,. . как функции времени. Так как кинетическая энергия Т зависит от обобщенных скоростей qi, то при дифференцировании первых членов уравнений, (127) по t в левых частях этих уравнений появятся вторые производные по времени qi от искомых координат. Следовательно, уравнения Лагранжа представляют собой обыкновенные дифференциальные уравнения второго порядка относительно обобщенных координат q  [c.378]

Вторая задача динамики. Зная силы, действующие на материальную точку, ее массу т, а также начальное положение точки и ее начальную скорость, получить уравнения движения точки.  [c.16]

Во второй основной задаче динамики точки задаются силы, приложенные к точке, положение точки в определенный момент времени и ее скорость VoBtot же момент времени. Иногда положение точки и ее скорость фиксируются в разные моменты времени.  [c.321]

Перейдем непосредственно к динамике твердого тела. В главе VIII были указаны два простейших движения твердого тела поступательное и вращательное. Кинематически изучение поступательного движения тела сводится к изучению движения любой его точки, в частности центра масс. По теореме о движении центра масс (п. 1.3 гл. XIX, формулы (19.9) и (19.13)) динамически изучение поступательного движения тела сводится к соответствующей задаче динамики точки. Поэтому для самостоятельного изучения остается лишь второе простейшее движение твердого тела — вращение вокруг неподвижной оси, к изучению динамики которого мы и приступим.  [c.377]

Вторая основная задача динамики точки. Зная действующие на материальную точку данной массы силы, начальное положение этой точки и ее начальную скорость, опреде у1ть закон движения точки.  [c.136]

Гораздо труднее обыкновенно бывает вторая задача, ее решение, собственно, и составляет основную задачу динамики точки. Чтобы выразить эту задачу при помош,и уравнения, нуягно, прежде всего, точно установить, в каком смысле и каким способом мы считаем заданной силу.  [c.318]

При де-йствип иа точку постоянных сил рекомендуется придерживаться следующего порядка решения первой н второй задач динамики точки  [c.167]

В предыдущих главах мы опирались на основное уравнение динамики точки (второй закон Ньютона), которое справедливо только в инерциальных системах отсчета. Напомним, что инерциальной называется такая система отсчета, в которой справедлив принцип инерции (первый закон Ньютона). Во многих случаях задачи динамики сводятся к исследованию движения в той или иной неинерциальной системе. В сущности, неинерциальной является и привычная для нас система отсчета, связанная с Землей. Впрочем, только весьма тонкие опыты (например, наблюдения за отклонением падающих тел к востоку, за вращением плоскости качания маятника) могут обнаружить неинерциальность геоцентрической системы отсчета. В большинстве приложений систему координат, жестко связанную с Землей, можно считать инерциальной.  [c.151]

Чаще всего к М. прибегают при исследовании разл. механических (включая гидроаэромеханику и механику деформируемого ТВ. тела), тепловых и эле родинамич. явлений. При этом число и вид критериев подобия для каждого моделируемого явления зависит от его природы и особенностей. Так, напр., для задач динамики точки (или системы материальных точек), где все ур-ния вытекают из второго закона Ньютона, критерием подобия явл. число Ньютона Ме=Р1 т1 и условие М. состоит в том, что  [c.426]


В тридцать втором издании сделана попытка, не выходя за рамки теоретической механики, отразить в какой-то степени новые проблемы техники и более полно охватить те вопросы классической механики, которые не нашли до сих пор достаточного освещения. В связи с этим в Сборник введены новые разделы, содержащие задачи по пространственной ориентации, динамике космического полета, нелинейным колебаниям, геометрии масс, аналитической механике. Одновременно существенно дополнены новыми задачами разделы кинематики точки, кинематики относительного дзихсения и плоского движения твердого тела, динамики материальной точки и системы, динамики точки и системы переменной массы, устойчивости движения. Небольшое количество новых задач введено также почти во все другие разделы Сборника некоторые задачи исключены из него. Сделаны также небольшие перестановки в размещении материала. В конце Сборника в качестве добавления приведена Международная система единиц (СИ).  [c.8]

При ренлении второй основной задачи динамики, когда по зада1пн,1М силам и начальным условиям требуется опре-дeJmть движение несвободной точки, часть сил, действующих на точку, а именно все силы реакций связей, заранее не известны и их необходимо определить по заданным связям  [c.255]

Как уже известно, основной закон динамики для несвободной материальной ючки, а следовательно, и ее дифференциальные уравнения движения имеюг такой же вид, как и для свободной ючки, только к действующим на точку силам добавляю все силы реакций связей. Естественно, что в эгом случае движения точки могут возникнуть соответствующие особенности нри решениях первой и второй основных задач динамики, чак как силы реакций связей заранее не известны и их необходимо донолнигельно определить по заданным связям, наложе1П1ым на движущуюся материальную точку.  [c.256]


Смотреть страницы где упоминается термин Задача динамики точки втора : [c.187]    [c.245]    [c.234]    [c.71]    [c.247]    [c.255]    [c.264]    [c.278]   
Теоретическая механика (1986) -- [ c.111 , c.113 ]



ПОИСК



Вторая задача динамики материальной точки

Вторая задача динамики точки

Вторая задача динамики точки

Вторая основная задача динамики материальной точки

Вторая основная задача динамики точки

ДИНАМИКА Динамика точки

ДИНАМИКА И СТАТИКА МАТЕРИАЛЬНОЙ ТОЧКИ Занятие 8. Второй закон Ньютона и две задачи динамики

Динамика ее задачи

Динамика точки

Динамики задача вторая плоского движения точки в полярных координатах

Задача динамики вторая

Задача динамики точки втора определимая

Задача динамики точки втора первая

Задачи динамики

Определение движения по заданным силам (вторая задача динамики материальной точки)

Применение дифференциальных уравнений движения свободной материальной точки к решению второй задачи динамики точки

Связь между первой и второй задачами динамики материальной точки



© 2025 Mash-xxl.info Реклама на сайте