Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вторая задача динамики точки

Вторая задача динамики точки  [c.296]

При решении второй задачи динамики точки необходимо придерживаться следующего порядка  [c.217]

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ДВИЖЕНИЯ СВОБОДНОЙ МАТЕРИАЛЬНОЙ ТОЧКИ К РЕШЕНИЮ ВТОРОЙ ЗАДАЧИ ДИНАМИКИ ТОЧКИ  [c.456]

Давая в выражениях (4) различные значения произвольным постоянным, можно сделать несколько неожиданный на первый взгляд вывод одна и та же сила может сообщить материальной точке не строго определенное движение, а целый класс разнообразных движений. По-видимому, присутствие шести произвольных постоянных интегрирования в общем решении (4) объясняется тем, что, зная массу движущейся точки и действующую на эту точку силу Р, мы не указали, из какого положения началось движение точки и какова была ее скорость в начальном положении, или, как говорят, в начальный момент времени 0. Таким образом, чтобы с помощью уравнений (6, 88) получить конкретное решение второй задачи динамики точки, надо, кроме массы точки и действующей на эту точку силы, знать еще, в каком положении находится точка в начальный момент (начальное положение) и какую она в этот момент имеет скорость (начальная скорость). Величины, определяющие значения начального момента радиуса-вектора Го начального положения точки и начальной скорости Vo, называются начальными условиями движения точки. В декартовых осях координат начальные условия в случае криволинейного движения точки задаются в виде  [c.458]


Сформулируйте первую и вторую задачи динамики точки,  [c.141]

В силу постоянства левых частей равенств функции г 5ь 1152,. .., 1156, зависящие от координат движущейся точки, проекций скорости и, вообще говоря, времени, обладают тем свойством, что при движении точки сохраняют свои значения неизменными. Они называются первыми интегралами движения и выражают законы сохранения некоторых величин С. Равенства (6.11) показывают, что существует шесть независимых первых интегралов. Любая функция первых интегралов также будет (зависимым) интегралом движения. Если все шесть первых интегралов известны, то из них можно (без интегрирования) получить полное решение второй задачи динамики точки. В самом деле, решая уравнения (6.11) относительно х, у, г, х, у, г, получим кинематические уравнения типа х = х(Сь Сг,. .., Се, О, что при заданных Сь Сг,. .., Се дает частные решения, а при произвольных — общий интеграл исходных уравнений.  [c.86]

Решение задач. -Уравнения (33) или (34) позволяют, зная как при движении точки изменяется ее скорость, определить импульс действующих сил (первая задача динамики) или, зная импульсы действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их импульсы. Как видно из равенств (30) или (31), это можно сделать лишь тогда, когда силы постоянны или зависят только от времени.  [c.203]

Таким образом, уравнения (33), (34) можно непосредственно использовать для решения второй задачи динамики, когда в задаче в число данных и искомых величин входят действующие силы, время движения точки и ее начальная и конечная скорости (т. е. величины F, t, Vo, Vi), причем силы должны быть постоянными или зависящими только от времени.  [c.203]

Решение задач. Теорема об изменении кинетической энергии [формула (52)1 позволяет, зная как при движении точки изменяется ее скорость, определить работу действующих сил (первая задача динамики) или, зная работу действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их работу. Как видно из формул (44), (44 ), это можно сделать лишь тогда, когда силы постоянны или зависят только от положения (координат) движущейся точки, как, например, силы упругости или тяготения (см. 88).  [c.215]

Вторая задача динамики. Зная силы, действующие на материальную точку, ее массу т, а также начальное положение точки и ее начальную скорость, получить уравнения движения точки.  [c.16]


ВТОРАЯ ОСНОВНАЯ ЗАДАЧА ДИНАМИКИ ТОЧКИ  [c.244]

Материальная точка, движение которой в пространстве не ограничено наложенными связями, называется свободной. Примером свободной материальной точки может служить искусственный спутник Земли в околоземном пространстве или летящий самолет. Их перемещение в пространстве ничем не ограничено, и, в частности, поэтому летчик на спортивном самолете способен проделывать различные сложные фигуры высшего пилотажа. Для свободной материальной точки задачи динамики сводятся к двум основным 1) задается закон движения точки, требуется определить действующую на нее силу или систему сил (первая задача динамики) 2) задается система сил, действующая на точку, требуется определить закон движения (вторая задача динамики). Обе задачи динамики решаются с помощью основного закона динамики, записанного в форме (1.151) или (1.154).  [c.125]

Ко второй (или обратной) задаче динамики точки относятся те задачи, в которых определяется движение точки по заданным силам. Силы, действующие на точку, могут быть как постоянными, так и заданными функциями времени, координат и скорости точки, т. е.  [c.296]

Решение второй задачи динамики сводится к интегрированию системы дифференциальных уравнений движения точки в координатной форме  [c.296]

Если же решают вторую основную задачу динамики точки и задан вектор силы, но требуется определить радиус-вектор как функцию (54) от времени, то для решения задачи нужно интегрировать уравнение (125).  [c.261]

Из уравнений движения мы выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (58) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки л-, у и z как  [c.262]

Из уравнений движения выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (5) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки х, у, и z как функции времени, решение сводится к интегрированию трех совместных дифференциальных уравнений, где независимым переменным является время.  [c.116]

Если решают первую основную задачу динамики точки и положение точки определено в векторной форме, т. е. дан радиус-вектор г как некоторая векторная функция времени 7 = 7 (/), то надо определить по (18 ) ускорение й, выражающееся второй производной от радиуса-вектора точки по времени /, и умножить его на массу точки т. Тогда получим следующее выражение основного закона динамики  [c.185]

Дана сила, приложенная к материальной точке заданной массы требуется найти движение точки, т. е. кинематические уравнения движения вторая задача динамики).  [c.20]

ВТОРАЯ ЗАДАЧА ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ 31  [c.31]

Вторая задача динамики материальной точки  [c.31]

Связь между первой и второй задачами динамики материальной точки  [c.38]

Согласно принципу независимости действия сил можно ре шить первую задачу в специальной ее постановке для различных законов сил, взятых по отдельности, а затем поставить вторую задачу динамики, т. е. найти движение материальной точки под действием совокупности законов сил. Таким образом, специальная постановка, определяя общие законы сил, позволяет предсказывать движение материальной точки при разнообразных по физической сущности силах и начальных условиях движения, приводящих к кинематическим характеристикам движений в конкретных случаях.  [c.38]


Решение второй задачи динамики для криволинейного движения свободной точки. Изложение методов решения второй задачи динамики составляет, по существу, основное содержание всех разделов динамики точки и динамики механической системы, в частности, твердого тела. Для материальной точки, как уже было сказано, эта задача состоит в том, чтобы по заданным силам, действующим на точку, массе точки и начальным условиям движения точки (начальному ее положению и начальной скорости) определить закон движения этой точки.  [c.456]

Решение второй задачи динамики для прямолинейного движения свободной точки. Вторая задача динамики для прямолинейного движения свободной точки в общем случае решается с помощью уравнения (9, 88). В отношении математической стороны эта задача может быть сведена к следующим операциям 1) к интегрированию с помощью тех или иных математических приемов этого уравнения, т. е. к нахождению его общего решения 2) к нахождению закона движения точки, т. е. к нахождению частного решения, удовлетворяющего начальным условиям, которые в декартовых осях координат в случае прямолинейного движения (по оси Ох) задаются в виде  [c.459]

Принцип Даламбера является весьма удобным приемом для решения первой задачи динамики, т. е. задачи определения действующих на точку сил по заданному закону ее движения. При решении второй задачи динамики принцип Даламбера позволяет упростить составление уравнений движения точки.  [c.493]

Вторая задача динамики механической системы состоит в том, чтобы, зная массы точек системы и действующие на эти точки силы, определить законы движения каждой из точек механической системы в отдельности, т. е. найти координаты х , у, к=, 2,. .., п) как функ-  [c.569]

Следует, однако, отметить, что этот порядок решения второй задачи динамики механической системы обычно не применяется, так как он слишком сложен и почти всегда связан с непреодолимыми математическими трудностями. Кроме того, в большинстве случаев при решении динамических задач бывает достаточно знать некоторые суммарные характеристики движения механической системы в целом, а не движение каждой из ее точек в отдельности. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики механической системы, являющихся следствиями уравнений (4). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии.  [c.570]

В чем состоят первая и вторая задачи динамики материальной точки  [c.835]

Решение второй задачи динамики на определение характера изменения скорости точки или ее координат в движении относительно подвижной системы отсчета, то есть на относительное движение, после определения действующих на точку сил, переносной и кориолисовой сил инерции (см. теорию) практически ничем не отличается от решения задач динамики M.T., рассмотренных ранее. Тот же алгоритм действий.  [c.119]

С помощью первых лучше понимаются и запоминаются законы сохранения. В немногочисленных задачах на определение уравнений движения системы тел рассматривается, как правило, их колебательное движение. Решаются эти задачи после составления диф. уравнения движения - то есть после решения задачи второго типа. Далее каждая из этих задач является обычной второй задачей динамики.  [c.120]

Это зфавнение в задачах на вращательное движение тел играет точно такую же роль, как диф, уравнение движения материальной точки (вида m X = 5 Х ) по прямой. С его помощью решаются и первая, и вторая задача динамики.  [c.124]

При де-йствип иа точку постоянных сил рекомендуется придерживаться следующего порядка решения первой н второй задач динамики точки  [c.167]

Если интегрирование дифференциальных уравнений движения точки сводится к квадратурам, как в приводимых ниже примерах, то будем вычислять эти квадратуры в соответству ощих пределах, т. е. будем вычислять определенные интегралы, причем нижние пределы интегрирования определяются начальными условиями движения шчки. Тогда отпадает необходимость определения произвольных постоянных. Заметим, что почти во всех задачах, помещенных в сборнике И. В. Мещерского и относящихся ко второй основ ой задаче динамики точки, имеются два типа дифференциальных уравнений ил1 уравнения с разделяющимися переменными, или линей 1ые уравнения второго порядка с П0СТ0ЯНН1ЛМИ коэффициентам .  [c.244]

Если система сил задана (все силы системы известны), то, определив проекции сил на оси координат, можно установить равновесие или неравновесие системы. В случае когда суммы проекций всех сил на каждую из осей равны нулю, заданная система сил уравновешена когда же сумма проекций всех сил хотя бы на одну из осей не равна нулю, система сил неуравновешена в первом случае зочка движется равномерно и прямолинейно, во втором случае — имеет ускорение (вторая задача динамики).  [c.289]

Во второй основной задаче динамики точки задаются силы, приложенные к точке, положение точки в определенный момент времени и ее скорость VoBtot же момент времени. Иногда положение точки и ее скорость фиксируются в разные моменты времени.  [c.321]

Имея в виду указанную аналогию между движением твердого тела, вращающегося вокруг неподвижной оси, и прямолинейным движением материальной точки, не будем останавливаться на примерах, относящихся к первой задаче динамики и покажем несколько примеров решения второй задачи динамики, относящейся к вращению твердого тела вокруг неподвин<ной оси.  [c.173]


Перейдем непосредственно к динамике твердого тела. В главе VIII были указаны два простейших движения твердого тела поступательное и вращательное. Кинематически изучение поступательного движения тела сводится к изучению движения любой его точки, в частности центра масс. По теореме о движении центра масс (п. 1.3 гл. XIX, формулы (19.9) и (19.13)) динамически изучение поступательного движения тела сводится к соответствующей задаче динамики точки. Поэтому для самостоятельного изучения остается лишь второе простейшее движение твердого тела — вращение вокруг неподвижной оси, к изучению динамики которого мы и приступим.  [c.377]


Смотреть страницы где упоминается термин Вторая задача динамики точки : [c.234]    [c.187]    [c.126]    [c.627]    [c.703]    [c.245]   
Смотреть главы в:

Сборник задач по теоретической механике  -> Вторая задача динамики точки



ПОИСК



Вторая задача динамики материальной точки

Вторая основная задача динамики материальной точки

Вторая основная задача динамики точки

ДИНАМИКА Динамика точки

ДИНАМИКА И СТАТИКА МАТЕРИАЛЬНОЙ ТОЧКИ Занятие 8. Второй закон Ньютона и две задачи динамики

Динамика ее задачи

Динамика точки

Динамики задача вторая плоского движения точки в полярных координатах

Задача динамики вторая

Задача динамики точки втора

Задача динамики точки втора

Задача динамики точки втора определимая

Задача динамики точки втора первая

Задачи динамики

Определение движения по заданным силам (вторая задача динамики материальной точки)

Применение дифференциальных уравнений движения свободной материальной точки к решению второй задачи динамики точки

Связь между первой и второй задачами динамики материальной точки



© 2025 Mash-xxl.info Реклама на сайте