Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Возникновение вихрей

Возникновение циркуляции вокруг крыла тесно связано с возникновением вихрей позади крыла. Вначале, пока крыло находится в покое, циркуляция отсутствует и общий момент импульса системы крыло — окружающая среда равен нулю. Поэтому и в дальнейшем общий момент импульса этой замкнутой системы должен оставаться равным нулю. В начальный момент, пока циркуляция еще не возникла, картина обтекания должна быть близка к той, которая изображена на рис. 352. Частицы воздуха, обтекающие крыло снизу, поднимаются мимо задней его кромки вверх. При этом под действием сил вязкости движение частиц воздуха становится завихренным, Так как частицы воздуха испытывают торможение со стороны кромки крыла, то они приобретают вращение против часовой стрелки. У кромки постепенно образуется вихрь с вращением против часовой стрелки (рис. 355). Затем этот вихрь отрывается от крыла и уносится потоком. Вихри, обладающие моментом импульса, соответствующим вращению против часовой стрелки, возникают один за другим, и таким образом у задней кромки крыла все время возникают моменты импульса. В результате в силу закона сохранения моментов импульса вокруг крыла должна возникнуть циркуляция, направленная в сторону, противоположную вращению вихря (по часовой стрелке).  [c.565]


Следует, однако, иметь в виду, что течений жидкости, строго отвечающих условиям потенциальности, в природе и технике не встречается. Представление о безвихревом характере движения является идеализацией, которая лишь с большей или меньшей степенью достоверности воспроизводит отдельные классы реальных течений. И тем не менее эта идеализация имеет важнейшее не только теоретическое, но и прикладное значение. Оно обусловлено тем, что вязкость жидкости, являющаяся первопричиной (для несжимаемой жидкости единственной) возникновения вихрей, проявляется, как правило, в ограниченных областях вблизи твердых поверхностей или в относительно узкой полосе за обтекаемым телом. В остальной части потока его завихренность может оказаться настолько малой, что поток можно считать потенциальным. Разумеется, встречается немало случаев, когда поток является сплошь завихренным и ни в какой его части влияние вязкости нельзя считать малосущественным. Такой поток может быть рассчитан только методами теории вязкой жидкости. Однако в тех случаях, когда допущение о потенциальности обосновано, его использование может значительно облегчить решение основной задачи гидродинамики. К числу таких случаев относится, например практически важная задача об обтекании твердых тел безграничным потоком (так называемая внешняя задача гидроаэродинамики).  [c.225]

Возникновение вихрей при обтекании воздушным потоком деталей вентилятора и периодический срыв их образует звуковые волны, которые создают вихревой шум. Кроме того, возникает так называемый шум от препятствия или неоднородности потока. Причиной этого рода шума могут стать местные неоднородности струи на входе и выходе из вентилятора, а также турбулентные пульсации воздуха, поступающего в вентилятор.  [c.176]

Для водопарового тракта, отличающегося сложностью конфигурации, особое значение приобретают местные сопротивления. Их величина зависит от геометрических характеристик канала. Причиной местных потерь является отрыв пограничного слоя от стенок и возникновение вихрей в потоке, в которых теряется значительное количество энергии. Элементы водопарового тракта, кроме малого коэффициента гидравлического сопротивления должны удовлетворять еще требованиям компактности, легкости и минимально подвергаться эрозии.  [c.186]

Краткое содержание. Турбулентность непосредственно связана с существованием пограничного слоя. При равновесии в таком слое имеет место баланс между процессами возникновения и затухания вихрей. Для объяснения процесса возникновения вихрей автором вводится вполне определенная структура потока, характеризуемая универсальным элементом турбулентности. Этот элемент вследствие его очевидного сходства  [c.56]


Несмотря на многообразие местных сопротивлений, в большинстве из них изменение скоростей движения приводит к возникновению вихрей, которые для своего вращения используют энергию потока жидкости (см. рис. 5.1, б). Таким образом, основной причиной гидравлических потерь напора в большинстве местных сопротивлений является вихреобразование. Практика показывает, что эти потери пропорциональны квадрату скорости жидкости, и для их определения используется формула Вейсбаха (3.15).  [c.56]

Давление газа может быть измерено существующими приборами (манометрами, дифманометрами, насадком с отверстиями, пьезоэлектрическими датчиками и т.д.). Необходимо учитывать, что в газовой динамике используется в расчетах только абсолютное давление, а приборы измеряют избыточное. Поэтому необходимо параллельно с измерением избыточного давления замерять барометрическое давление (атмосферное). К установке приборов предъявляются повыщенные требования. Отверстия в стенках каналов для подключения приборов давления должны быть малых диаметров, чтобы избежать возникновения вихрей, строго перпендикулярными к внутренней поверхности канала и не должны иметь выступов и заусениц. При наличии выступов, заусениц и при измерении давления насадком с отверстием (рис. 7.1) при скоростях, близких к звуковым, и при сверхзвуковых скоростях появляются скачки уплотнения, и это искажает результат. При измерении давления насадком боковое отверстие в насадке должно быть расположено на расстоянии ( 10... 5)D от носика.  [c.131]

Рис. 11-3. Возникновение вихрей из воли на поверхности разрыва скорости. Рис. 11-3. Возникновение вихрей из воли на поверхности разрыва скорости.
В первой области появление низкочастотного излучения малой мощности связано с возникновением вихрей на срезе сопла, частота которых (для круглого сопла) определяется выражением  [c.38]

Для излучателя с К = 1,33, как это следует из рис. 25,6, различие в работе сказывается слабее [26], так как струя из сопла полностью входит в резонатор, и некоторое ухудшение работы резонатора с плоским краем может быть объяснено лишь возникновением вихрей на кромке при вытекании воздуха.  [c.44]

Из теоремы Лагранжа следует, что в идеальной жидкости, находящейся под действием объемных сил с однозначным потенциалом и движущейся баротропно, не может быть вихрей, так как нет условий для их образования. Можно сказать и наоборот, что, если вихри путем нарушения ранее перечисленных условий были созданы в идеальной жидкости, то они уже не смогут исчезнуть, и движение сохранит свою вихревую структуру. В действительности приходится постоянно наблюдать как образование, так и исчезновение вихревых движений.. Главной причиной этих явлений служит неидеальность жидкости, наличие в ней внутреннего трения. Как уже ранее упоминалось, в практически интересующих нас случаях внутреннее трение играет роль лишь в тонком пограничном слое на поверхности обтекаемого тела и в аэродинамическом следе тела, т. е. в жидкости, которая прошла сквозь область пограничного слоя и образовала течение за кормой обтекаемого тела. Здесь, в тонком пограничном слое и образуется завихренность жидкости. Иногда в следе за телом завихренность быстро угасает, и поток в достаточном удалении за телом становится вновь безвихревым. В других случаях сошедший с поверхности тела слой завихренной жидкости распадается на отдельные вихри, которые сносятся уходящим потоком и сохраняются даже на сравнительно больших расстояниях от тела. Таковы, например, отдельные вихри, наблюдаемые в виде воронок в реках за мостовыми быками , или пыльные смерчи, возникающие в ветреную погоду. Внутреннее трение не является единственной причиной возникновения вихрей. Так, в свободной атмосфере вдалеке от твердых поверхностей возникают непосредственно в воздухе грандиозные вихри — циклоны и антициклоны. Причиной этих вихреобразований служит отклонение движения воздуха  [c.213]


Теория идеальной жидкости, не учитывающая наличия трения, естественно, не могла объяснить возникновения вихрей в набегающем на тело безвихревом потоке. Для того чтобы, оставаясь в рамках теории идеального безвихревого потока, определить величину воздействия  [c.277]

Слияние двух потоков. Поверхности раздела. Возникновение вихрей. Если два потока жидкости различного происхождения сливаются в один поток позади острого ребра обтекаемого тела (рис. 39), то в общем случае постоянная в уравнениях Бернулли для обоих потоков имеет разные значения. Это означает, что по обе стороны от поверхности раздела обоих потоков, на которой давление, очевидно, должно быть одинаковым, скорости имеют разные значения. Но даже в том случае, когда постоянная в уравнениях Бернулли для обоих потоков имеет одинаковые значения, скорости над и под поверхностью раздела могут отличаться друг от друга своими направлениями. Таким образом, в рассматриваемых случаях на поверхности раздела происходит  [c.74]

Рис. 41. Возникновение вихрей из волн на поверхности раздела Рис. 41. Возникновение вихрей из волн на поверхности раздела
Рис. 43. Возникновение вихря при обтекании острого ребра Рис. 43. Возникновение вихря при обтекании острого ребра
Возникновение вихрей в идеальном газе.  [c.350]

Для того чтобы лучше представить себе причину возникновения вихрей в идеальном газе, выразим в последней формуле-  [c.351]

ВОЗНИКНОВЕНИЕ ВИХРЕЙ В ИДЕАЛЬНОМ ГАЗЕ  [c.353]

Потери напора в тройниках и крестовинах вызываются возникновением вихрей в результате отрыва потока от  [c.106]

В прямом направлении течения поток встречает первый каскад нормально расположенных лопастей, обтекая которые, поступает в проходы между рядами лопастей. Сопротивление диода в этом случае создается в основном за счет возникновения вихрей за кромками лопаток. При обратном течении поток, 252  [c.252]

Возникновение циркуляции по замкнутому контуру или возникновение вихрей в условиях течения идеальной несжимаемой жидкости при массовых силах, обладающих потенциалом, невозможно, как следует из теоремы Гельмгольца.  [c.135]

Спонтанное нарушение симметрии — одна из фундаментальных идей современной физики. В гидродинамике классическими примерами потери симметрии в первоначально симметричном потоке могут служить вихревая дорожка Кармана, течение в нло-ском диффузоре или возникновение вихрей Тейлора между двумя вращающимися цилиндрами. Описание этих явлений можно найти в обычном курсе гидродинамики.  [c.27]

Введение понятия о вихревом слое дает ключ к объяснению возникновения вихрей в жидкости. По теореме Лагранжа (см. 3 этой главы), если в начальный момент времени в идеальной жидкости не было вихрей, то их не будет во все время движения. В действительности же мы видим, что при условиях, близких к условиям теоремы Лагранжа (постоянство плотности, малая вязкость жидкости, наличие потенциала у действующих сил), вихри в жидкости возникают. Если допустить, что на поверхности тела, обтекаемого жидкостью, образуется вихревой слой, то не трудно представить себе, что при неустойчивости этого слоя от него могут отрываться вихри, как это часто имеет место в действительности при движении тела в жидкости.  [c.205]

Возникновение вихрей в жидкости 162, 205 Волны 36  [c.578]

Таким образом, небольшие колебания режима вызывают в этой области значительные смещения вала, которые легко переходят в циклические вихревые движения. При возникновении вихрей ламинарное течение масла становится турбулентным, в связи с чем резко возрастает трение и тепловыделение в подшипнике. В масляном слое возникают кавитацион-. ные процессы, приводящие к разрушению материала додшипника.  [c.341]

В гидродинамике доказывается, что движения идеальной жидкости, бывшие безвихревыми в некоторый момент времени, всегда остаются безвлхревыми. Если же движение было в некоторый момент вихревым, оно всегда будет вихревым. Возникновение вихрей должно быть вызвано специальными причинами, например вязкостью газа или жидкости.  [c.103]

Утверждение о невозможности возникновения вихрей при указанных условиях известно под наименованием теоремы Лагранх а.  [c.118]

Подчеркнем, что изложенные в 7 гл. VI теоремы основаны на определенных допущениях о свойствах среды и о характере процессов. Невыполнение с( )ормулированных при этом условий может привести к нарушению свойств потенциальности течений. Например, наличие вязкости может оказаться источником возникновения вихрей. В идеальном газе могут появляться поверхности разрыва скорости и нарушаться баротропность течения вследствие разрывов и т. д.  [c.153]

Закрутка потока приводит к существенному увеличению коэффициентов массоотдачи. Это обусловлено увеличением скорости закрученного потока в пристенной области по сравнению С осевым потоком, усилением массообменных процессов благодаря возникновению вихрей Тейлора — Гёртлера вблизи криволинейной поверхности и увеличению степени турбулентности.  [c.158]

Закрутка потока в каналах способствует повышению интенсивности теплоотдачи по ряду причин за счет увеличения скорости потока относительно поверхности канала, появления вращательной составляющей, повышения уровня турбулентности в потоке и возникновения вихрей Тейлора-Тертлера в непосредственной близости от поверхности теплообмена.  [c.188]


Действительно, скорость течения сверхтекучей компоненты Не выражается через градиент фазы D., = (/t/w)V(p, где т — масса атома Не. Циркуляция скорости выражается через изменение фазы S(p при обходе линии вихря по произвольному замкнутому контуру у и равна (2пй/т)5ф, Однозначной волновая ф-ция Ф будет лишь при условии, что изменение фазы 5ф = 2я7У, где ЫеЖ, т. е. имеет место квантование циркуляции скорости при обходе вокруг линии вихря. Поскольку бф = 2лЛ при обходе по любому сколь угодно малому контуру у, это означает, что сама фаза не может быть однозначно определена на линии вихря, т. е. это действительно особая линия. Именно в силу квантования циркуляции интенсивность вихря лишена возможности уменьшаться непрерывным образом под действием вязкости. С др. стороны, запрещено возникновение вихрей с произвольной циркуляцией. Все это и обеспечивает незатухающий характер сверхтекучего движения в Не. Значению N=Q соответствуют безвихревые, или потенциальные, течения Не. Топологич, свойства сверхпроводников совпадают со свойствами сверхтекучего Не.  [c.138]

В то же время экспериментальные данные Хирасаки и Лау-сона указывают на недостаток их теории измеренный перепад давления отличался от предсказываемого на порядок Авторы считают, что причина такого расхождения в сложных физикохимических взаимодействиях ПАВ с пленкой при течении. Другая причина повышенного сопротивления ламеллы была высказана Натом и Бюрлей (Nutt и Burley, 1989), экспериментально продемонстрировавшими сложную вихревую картину течения на границе Плато при движении одиночной ламеллы. Возникновение вихрей внутри границы Плато и соответствующее повышение диссипации энергии можно лишь ожидать при достаточно больших скоростях движения ламеллы, точнее, при режимах движения, когда, несмотря на малые капиллярные числа в зависимости перепада давления от скорости появляется и число Рейнольдса. Однако для фильтрационных течений пены такая зависимость не наблюдалась.  [c.113]

ЧТО приводит к возникновению вихря, вращающегося против часовой стрелки. Критическая точка В потенцнального течения не реализуется, и линии тока прижимаются к верхией поверхности крыла. В процессе ускорения до достижения скорости Vo вихрь растет, отрывается и закручивается за кормой. Поле линий тока в стационарном состоянии (вне тонкого пограничного слоя) будет таким, как показано на рис. 15-15,6. Вышеупомянутый вихрь, называемый и а-  [c.412]

Внутреннее трение не является единственной причиной возникновения вихрей. Так, в свободной атмосфере причиной вихреобразований служит отклонение движения воздуха от баротропности плотность воздушных слоев зависит не только от давления, но и от температуры, определяемой солнечной радиацией, от количества водяных паров и других причин.  [c.159]

В случае процесса адиабатического дросселирования, показанного на рис. 7.5 в виде процесса в, необходимо отметить, что по мере прохождения жидкости через дроссель скорость ее увеличивается и, следовательно, удельная энтальпия понижается. Однако после выхода из дросселя поперечное сечение устройства резко возрастает. При этом кинетическая энергия, возникшая при прохождении жидкости через дроссель, будет диссипировать за счет вязких сил и возникновения вихрей. Поэтому в состоянии 2, ниже дросселя скорость жидкости будет мала и различие в кинетических энергиях жидкости выше и ниже дросселя практически исчезает. Таким образом, ясно, что удельная энтальпия в конечном состоянии /гг практически совпадает с удельной энтальпией в начальном состоянии h, однако по мере перехода жидкости от состояния 1 к состоянию 2 удельная энтальпия сначала падает, а затем возрастает. Следовательно, рассматриваемый процесс не может считаться изэнгальпическим. Причины сильной необратимости этого процесса будут подробнее рассмотрены в гл. 9,  [c.93]


Смотреть страницы где упоминается термин Возникновение вихрей : [c.214]    [c.551]    [c.551]    [c.552]    [c.553]    [c.109]    [c.246]    [c.486]    [c.117]    [c.43]    [c.221]    [c.349]   
Смотреть главы в:

Физические основы механики  -> Возникновение вихрей



ПОИСК



Вихрь

Возникновение вихрей в жидкост

Возникновение вихрей в идеальном газе

Колесов, А.Г. Хоперский (Ростов-на-Дону). Простейшие режимы движения жидкости вблизи пересечения бифуркаций возникновения неизотермических вихрей Тейлора и азимутальных волн

Поверхности раздела. Возникновение вихрей и циркуляции

Слияние двух потоков. Поверхности раздела. Возникновение вихрей



© 2025 Mash-xxl.info Реклама на сайте