Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вихрь паровой

Вакансии 372 Вероятность ская 111 Вихрь паровой 319 Волны длинные гравитационные 321  [c.589]

При поступательно-вращательном течении жидкости по трубе имеются две области движения. Собственно жидкость течет в кольцевом зазоре, прилегающем к стенкам трубы и заключенном между радиусом трубы и радиусом вихря г.. Внутри этого кольцевого зазора жидкость движется вдоль трубы со скоростью w и вращается со скоростью о)ф, удовлетворяющей условию сохранения момента скорости. На оси трубы образуется цилиндрическая полость радиуса г.. В этой полости жидкости нет она или пуста, или заполнена воздухом (в том случае, когда труба сообщается с атмосферой) если учесть способность жидкостей испаряться, то будет ясно, что в этой полости будут находиться также пары жидкости. Заполняющие эту полость воздух или пары жидкости вращаются со скоростью, равной аг, т. е. как твердое тело по этой причине полость называют воздушным или паровым вихрем.  [c.296]


Теорема Жуковского, опубликованная им в 1906 г., сыграла важную роль в развитии теории крыла, которая явилась основой теории летательных аппаратов. Эта теорема получила также широкое применение в теории гребных винтов кораблей, теории лопастных гидравлических, паровых и газовых турбомашин. Ее значение определяется прежде всего тем, что она вскрывает физическую причину появления подъемной силы такой причиной являются вихри, мерой интенсивности которых служит циркуляция скорости. При этом несущественна причина, порождающая эти вихри. В рамках теории идеальной жидкости, циркуляция может быть порождена только вихрями, которые мы считаем существующими в потоке, однако не можем указать источник их появления (по крайней мере для однородной несжимаемой жидкости). Такие вихри, определяющие подъемную силу, Жуковский называл присоединенными. В реальной жидкости циркуляция порождается действием сил трения, которые развиваются и проявляются в пограничном слое, образующемся у поверхности тела (см. гл. 8 и 9). Таким образом, присоединенные вихри Жуковского являются теоретическим эквивалентом системы вихрей, возникающих в пограничном слое реальной жидкости. Теорема Жуковского указывает на то, что целесообразно изменяя форму профиля обтекаемого цилиндрического тела, т. е. изменяя интенсивность вихрей в пограничном слое, можно соответственно изменять подъемную силу.  [c.235]

Новые способы обработки цинковых руд н производство бутылок во вращающихся изложницах, невиданная конструкция конвертора для рафинирования металла и центробежные сепараторы, доильные машины и котлы высокого давления, обезвоживание торфа и паровая турбина — разве перечислить все, чем занимался Лаваль А ведь каждая из этих технических проблем влекла за собой почти неминуемо создание коммерческого предприятия, постройку заводов, выпуск акций, колоссальную организационную работу. Жизнь Лаваля—это стремительный вихрь творчества, коммерческих неудач и изобретательских успехов. Она до предела наполнена трудом, большая часть которого не принесла изобретателю ни славы, ни богатства.  [c.32]

В трубах, обступивших топку и решетками вставших на пути горячих газов, движется вода. Вначале она только подогревается, далее превращается в пар, который прокаливается в трубах, обдуваемых еще более горячим потоком газов — в пароперегревателях. В результате образуется пар, имеющий давление в 100 атмосфер и температуру свыше 500 градусов. Горячее дыхание такого пара обугливает дерево, если тонкая его струйка просачивается сквозь фланцы соединенных трубопроводов, она царапает полированную поверхность стали, как острие резца или грань алмаза. И вот этот раскаленный вихрь, это огненно-жаркое дыхание перегретого пара устремляется сквозь сопла на лопатки паровой турбины.  [c.38]


Вода со стороны С детали А подводится к кольцевому каналу, из которого через тангенциальные каналы поступает в вихревую камеру К, где приобретает вихревое движение. Затем струя воды через центральное отверстие проходит в трубопровод в виде кольца, ограниченного с наружной стороны окружностью отверстия, а с внутренней — наружным диаметром парового вихря, образующегося и находящегося в центре выходящей струи воды. Взаимодействие водяного кольца с паровой вихревой струей на выходе из форсунки приводит к распылению воды.  [c.450]

Небезынтересно знать толщину водяного кольца в выходном отверстии форсунки. Для этого необходимо знать диаметр парового вихря в этом отверстии.  [c.452]

При известном значении коэффициента <р диаметр парового вихря равняется  [c.452]

При появлении мелкодисперсной жидкой фазы в отрывных областях частота пульсаций падает, так как мелкие капли частично подавляют пульсации в отрывных областях. Следовательно, рассматриваемые, опыты подтверждают и в этом случае влияние начального состояния на пульсационные характеристики потоков насыщенного и влажного пара. По мере увеличения начальной влажности размеры частиц влаги возрастают, инерционность системы увеличивается и амплитуда пульсаций падает в этом случае влага служит своеобразным демпфером в процессе образования, срыва и диффузии паровых вихрей в зонах отрыва.  [c.250]

Турбулентные вихри в потоке кипящей жидкости, естественно, оказывают существенное влияние на характер движения паровых пузырьков. Уравнение движения свободно всплывающего парового пузырька [35]  [c.162]

Это уравнение позволяет сделать вывод о том, что не только на движение жидкости, но и на движение парового пузырька существенное влияние оказывает наличие в потоке турбулентных вихрей. Пользуясь методом анализа размерностей, можно установить влияние физических свойств жидкости и турбулентных вихрей в ее потоке на теплоотдачу при кипении.  [c.163]

Оторвавшаяся от пограничного слоя струи капля в момент отделения имеет скорость, близкую к 0. Выше показано, что в осевом направлении капля весьма быстро разгоняется до скорости, близкой к скорости парового потока. В то же время при отбрасывании капли на стенку решающую роль играют вихри, образующиеся в кормовой части струи, а также радиальная составляющая динамического воздействия парового потока, обусловленная несимметричностью капли. В этом случае радиальная составляющая скорости будет иметь значительно большую величину, чем это следует из уравнения (11). Вследствие сложения рассмотренных сил, действуюш,их на каплю, она попадает на стенку под острым углом. Это подтверждается кавернами, которые имеют профиль, схематично показанный на рис. 2. В осевом направлении край каверн (второй по ходу пара) более крутой. Очевидно, что механическое воздействие мелкодисперсной влаги тем заметнее, чем больше скорость соударения капли со стенкой. В [2] показано, что уже при скорости капли, равной 125 м/с, возможен эрозионный износ.  [c.98]

Под действием подъемных сил вихри могут отрываться от волновой поверхности и перемещаться в паровую фазу. Они вовлекают во вращательное и поступательное движение мелкие капли с поверхности пленки и осуществляют, таким образом, унос жидкости. При относительно малых скоростях волн реализуется схема, изображенная на рис. 12.10,а, а при больших скоростях волн — схема на рис. 12.10,6. Не исключена вероятность одновременного существования двух механизмов переноса на различных участках пленки.  [c.336]

I — нижняя часть корпуса клапана 2 — обтекатель 3 — верхняя часть корпуса клапана 4 — седло чаши клапана 5 — чаша основного клапана 6 — разгрузочный клапан 7 — стакан 8 — паровое сито 9 — шпонки, удерживающие чашу клапана от вращения 10 — шток П — букса 12 — фланец крепления автоматического затвора клапана 13 — крышка корпуса стопорного клапана 14 — ребро, разрушающее окружной вихрь 15 — патрубок для присоединения перепускной трубы  [c.169]

В каналах рабочих лопаток активной ступени абсолютная и относительная скорости падают, что вызвано разными причинами. В то время как абсолютная скорость падает в основном за счет превращения кинетической энергии парового потока в механическую работу, относительная скорость паДает исключительно из-за потерь на лопатках. Потерянная на трение и вихри энергия  [c.190]


Все потери энергии паровой турбины можно разделить на две группы внутренние и внешние. Внутренние потери возникают внутри корпуса турбины и приводят к уменьшению используемого теплоперепада h . Они представляют собой потерю энергии пара на трение, вихри, удар и пр. Потерянная энергия превращается в теплоту, повышая конечную энтальпию пара. К внешним потерям турбины относятся потери от утечки пара через концевые уплотнения и механические потери.  [c.199]

ИТ. п. в областях, связанных с исследованием деталей машин, рассматриваются колебания различных пружин и рессор. Большую роль играет исследование К. д. в гидравлике, в особенности при установлении законов движения волн и образования вихрей, движения жидкости в трубопроводах и в сообщающихся сосудах и в частности в гидравлич. машинах и т. п. Крупное прикладное значение имеет исследование колебаний пара в соплах паровых турбин. Аналогичные проблемы возникают при исследовании законов движения газов и паров в трубопроводах. Фундаментальное значение имеют К. д. в акустике, базирующейся целиком на установлении законов К.д.воздуш ной среды. С этими же проблемами связаны и вопросы строительной акустики, теории музыки, конструирования музыкальных и акустических инструментов и т. п. Громадная область прикладной и теоретич. электротехники, теория электромагнитных колебаний", теории квант и новейших статистич. и волновой механики целиком базируются на исследовании вопросов, связанных с видом К. д., и наконец в таких областях, как физиология, биология и метеорология, исследования К. д. имеют крупное значение.  [c.280]

Рассмотрим модель течения в шнеке постоянного шага. Решетка такого шнека (см. разд. 2.10.3) является решеткой пластин (рис. 2.49). Возьмем решетку на среднем радиусе шнека. При некотором давлении на нерабочей стороне пластины, вблизи входной кромки, в зоне пониженного давления возникает присоединенная паровая каверна 1 (рис. 3.56, а), замыкающаяся на длине в области повышенного давления. Струйки жидкости, прилегающие к каверне, огибая ее, как плохообтекаемое тело, отрываются и образуют за ней вихревой след 2. Из-за отрыва потока давление в следе понижено. Это приводит к подсосу в области следа 2 жидкости из невозмущенного потока и смещению ее с жидкостью в зоне отрыва, в результате чего давление в следе увеличивается по направлению к выходной кромке и вихри исчезают на длине сл- След разрушается в пределах решетки.  [c.191]

Опишем цикл предлагаемой установки изображенный на Т, S-н Р, i — диаграммах (рис. 8.20). В предлагаемой установке в вихревой трубе происходит сепарация конденсата — жидкой фазы хладагента и отвод части несконденсировавшегося газа. Как уже отмечалось, вихревая труба выполняет роль конденсатора и расширительного устройства с переохладителем. После процесса охлаждения 2"—2 рабочее тело через завихритель 13 подается в вихревую трубу 3 в виде интенсивно закрученного вихревого потока. В процессе энергоразделения повышается температура у периферийного потока, перемещающегося от соплового ввода за-вихрителя 13 к крестовине 7. Температура периферийных масс газа на 30—50% выше исходной. Этот факт и высокий коэффициент теплоотдачи от подогретых масс газа к стенкам камеры энергетического разделения 14 приводит к интенсификации теплообмена и уменьшению потребной поверхности теплообмена у конденсатора, а, следовательно, обеспечивает уменьшение его габаритов и металлоемкости. В приосевом вихре, имеющем пониженную температуру за счет расширения в процессе дросселирования и вследствие реализации эффекта Ранка, происходит конденсация. Образовавшиеся капли влаги отбрасываются центробежными силами на периферию. Часть конденсата вытекает через кольцевую щель 18 в конденсатосборник, а другая уносится потоком и вытекает через кольцевое коническое сопло 9 в камеру сепарации 4. По стенкам камеры сепарации жидкая фаза хладагента стекает и отводится в испаритель 10. Из испарителя 10 жидкая фаза прокачивается насосом 11 через охлаждаемый объект 12, охлаждает его и возвращается в испаритель 10. Из испарителя 10 паровая фаза через сопло 17 поступает в вихревую трубу в центральную ее часть в область рециркуляционного течения и через коническое кольцевое сопло 9 выбрасывается в се-парационную камеру 4, откуда в виде паровой фазы всасывается вновь в компрессор 1, сжимается до необходимого давления и вновь возвращается через теплообменник 2 на вход в вихревую трубу 3. По межрубашечному пространству 16 между камерой энергоразделения 14 и кожухом 15 циркулирует охлаждающая  [c.397]

Для адиабатического сжатия формула (3.3.) дает величину вихр. =0,07. Это значение следует сравнить со значениями коэффициентов и k газовой холодильной машины с адиабатическим расширением, работающей при тех же температурах Т и Т . Величина представляет собой значение холодильного коэффициента машины, не использующей работу расширения. Вычисление дает = 0,45 и S = 0,97. Отсюда видно, что цикл с вихревой трубой обладает значительно меньшим холодильным коэффициентом, чем обычный цикл газовой холодильной машины. Относительный к. п. д. цикла с вихревой трубой ио сравнению с газовой холодильной машиной Т отн. = вихр./ составляет, следовательно, 7,3%. Поскольку онисанпые выше газовые холодильные машины обладают небольшими к. п. д. по сравнению, например, с паровыми компрессионными машинами, представляется маловероятным, чтобы вихревые трубы приобрели большое практическое значение, за исключением тех случаев, когда необходимым требованием является предельная простота конструкции.  [c.15]

Теорема Жуковского, опубликованная им в 1906 г., сыграла выдающуюся роль в развитии теории крыла, которая, в свою очередь, явилась основой теории летательных аппаратов. Эта теорема получила также широкое применение в теории гребных винтов кораблей, теории лопастных гидравлических, паровых и газовых турбомашин. Ее значение определяется прежде всего тем, что она вскрывает физическую причину появления подъемной силы такой причиной являются вихри, мерой интенсивности которых служит циркуляция скорости. При этом несущественна причина, порождающая эти вихри. В рамках теории идеальной жидкости циркуляция может быть порождена только вихрями, которые мы а priori мыслим существующими в потоке, однако не можем указать источник их появления (по крайней мере для несжимаемой жидкости). Такие вихри, определяющие величину подъемной силы, Жуковский называл присоединенными. В реальной жидкости циркуляция порождается действием сил трения, которые развиваются и проявляются в пограничном слое, прилегающем  [c.251]


В этом устройстве сжатая до (некоторого давлен ия жидкость П(ри температуре, близ1кой к точке кипения, инжектируется в цилиндрическую камеру, образуя вихрь, состоящий из кольца жидкости вокруг парового ядра. Падение давления приводит к испарению части жидкости, в результате чего присходит охлаждение оставшейся части. Автором был проверен э ффект охлаждения ряда веществ, в том числе жидкого азота и жидкого водорода. При этом наблюдалось переохлаждение на 4 п даже на 5 град. Этот эффект переохлаждения сможет быть использован, по-видимому, в криогенной технике, где даже сравнительно небольшое понижение температуры часто играет существенную роль.  [c.157]

Основную роль В процессе взаимодействия фаз на границе раздела играет внутрифазная и межфазная вязкость. На волновой поверхности создаются знакопеременные продольные градиенты давления, и конфузорные участки в паровой фазе сменяются диффузорными участками с положительными градиентами давления. На таких участках могут возникать локальные отрывы парового пограничного слоя в приволновых областях. Отрывы порождают мелкие вихри, находящиеся под воздействием подъемных сил, направление которых может меняться.  [c.336]

А. С. Гиневским и Я. Е. Полонским в 1962 г. были опубликованы расчеты (по способу дискретных вихрей) решеток из двухпараметрических дужек с максимальным прогибом до 30% и его положением на 30—50% хорды. На основании результатов этих расчетов были получены полезные интерполяционные формулы для основных гидродинамических параметров решеток используемых в осевых вентиляторах и компрессорах. Несколько позже вихревой метод был запрограммирован и применен в практических расчетах решеток паровых турбин и стационарных газотурбинных двигателей (М. И. Жуковский, Н. И. Дураков и О. И. Новикова, 1963 В. М. Зеленин и В. А. Шилов, 1963). В теоретическом отношении и для реализации численных методов важны вопросы разрешимости уравнений, сходимости последовательных приближений и оценки точности решений. В теории гидродинамических решеток эти вопросы изучены еще недостаточно они более продвинуты в теории упругости в связи с близкими задачами о напряжениях в плоскости, ослабленной бесконечным рядом равных вырезов (Г. Н. Савин, 1939, 1951 С. Г. Михлин, 1949) и их двоякопериодической системой (Л. М. Куршин и Л. А. Фильштинский, 1961 Л. А. Филь-штинский, 1964).  [c.116]

Потеря от вихрей. Пар по выходе из сопел поступает в кольцевой межлопаточ-ный зазор. Из сопел пар выходит в виде отдельных струек. Паровые струйки, оставляя перегородки сопел, создают сплошной поток за счет образования вихревых движений пара на продолжении перегородок сопел. Таким образом, возникают потери из-за наличия вихревого движения пара (фиг. 20).  [c.36]

Турбинами (от латинского слова игйо —вихрь, вращение) называют лопастные машины, не имеющие поршня и кривошипношатунного механизма и преобразующие кинетическую и потенциальную энергию потока рабочего тела в механическую энергию вращения вала. В зависимости от типа рабочего тела турбины разделяют на паровые, газовые и гидравлические.  [c.5]

Например, характеристики многих машин, производяш их работу, определяются нестационарными явлениями, о которых исследователи имеют до сих пор довольно поверхностное представление. Особое значение эта проблема имеет для течений за лопатками газовых и паровых турбин. Лопатки с острыми выходными кромками для малоразмерных турбин выполнить практически невозможно. В крупногабаритных турбинах нередко также нельзя сделать тонкие кромки из условий обеспечения прочности или охлаждения лопаток. Выходные кромки могут иметь и плоскую торцевую поверхность, но обычно на практике применяют лопатки со скругленными кромками. И при дозвуковых, и при сверхзвуковых скоростях статическое давление непосредственно за тупой выходной кромкой меньше, чем в прилежащем основном потоке. Это относительно низкое давление называют донным. Оно проявляется в дополнительном донном сопротивлении профиля. Хотя донное сопротивление существует и при дозвуковых, и при сверхзвуковых течениях, порождается оно в этих случаях различными причинами. При дозвуковых течениях фактором, определяющим сопротивление профиля, является существование вихревой дорожки Кармана. При сверхзвуковых течениях периодический сход вихрей с выходных кромок может подавляться в этом случае будут преобладать эффекты потери импульса, связанные с волнами расширения и сжатия.  [c.225]


Смотреть страницы где упоминается термин Вихрь паровой : [c.64]    [c.458]    [c.142]    [c.189]   
Термодинамика (1984) -- [ c.319 ]



ПОИСК



Вихрь



© 2025 Mash-xxl.info Реклама на сайте