Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Смазка высокого давления

Смазывающее действие состоит в уменьшении силы трения (снижение коэффициентов трения) между поверхностями инструмента, стружки и детали. Это достигается путем разделения контактирующих поверхностей смазочными пленками. При этом происходит перевод трения между поверхностями детали и инструмента в трение между пленкой и поверхностью или в трение между слоями пленки. Различают следующие виды смазки гидродинамическую, граничную смазку и смазку высокого давления.  [c.885]


Смазка высокого давления возникает, когда активные элементы среды (хлор, фтор, сера, кислород, йод) вступают в химическое взаимодействие с материалом и образуют на поверхности металла химические пленки (окислы, сульфиды, хлориды, фосфаты и др.). Резкой грани между химической адсорбцией (хемосорбцией) и химическими соединениями провести невозможно, различие заключается в том, что хемосорбция обратимый процесс, а образование смазочной пленки высокого давления - нет.  [c.885]

Различают следующие виды смазок гидродинамическую, граничную и смазку высокого давления.  [c.444]

При повышении энергии молекул среды и их активности происходит внедрение атомов среды в кристаллическую решетку металла и образовании на поверхности металла химических пленок (оксидов, сульфидов, хлоридов, фосфатов и др.) - возникает смазка высокого давления. Внутренние связи продукта химической реакции превосходят связи металла, поэтому реакция образования пленок смазки высокого давления необратима. Десорбция может происходить только как десорбция продуктов реакции.  [c.445]

Наиболее активными элементами, которые участвуют в образовании смазки высокого давления, являются хлор, фтор, сера, фосфор, йод и др. Эти элементы образуют слои химических соединений с металлом с более низкими сдвиговыми сопротивлениями и температурами плавления - происходит снижение коэффициента трения в зоне контакта трущихся поверхностей.  [c.445]

Для подачи в подшипники консистентной смазки или трансмиссионного масла требуются большие усилия, для преодоления которых необходимо применение системы смазки высокого давления.  [c.654]

Смазочные масла по сравнению с консистентными смазками, имеют следующие преимущества меньший коэффициент трения и большую стабильность свойств способны проникать в узкие зазоры, обеспечивают лучший отвод теплоты и удаление продуктов износа допускают смену смазки без разборки опор. Однако жидкие смазки требуют более сложных уплотнений и регулярного наблюдения за подачей. Консистентные смазки хорошо выдерживают высокие давления и колебания температуры, лучше предохраняют опоры от коррозии.  [c.448]

Гидродинамическая теория смазки позволяет определить несущую способность масляного клина в зазоре с жесткими стенками, например, в подшипниках скольжения (см. 18.5). Применить эту теорию для объяснения процессов смазки зубчатых передач оказалось невозможно, прежде всего из-за того, что в контакте зубчатых передач возникают очень высокие давления. Величина этих давлений зависит не только от внешней нагрузки и геометрических размеров контактирующих поверхностей, но и от упругих свойств этих поверхностей. Это вынуждает при рассмотрении процессов смазки зубчатого зацепления учитывать как гидродинамические эффекты, происходящие в контакте, так и упругие деформации контактирующих поверхностей. Задача осложняется еще и тем, что эти процессы оказываются взаимозависимыми.  [c.147]


В винтовых зубчатых передачах иногда наблюдается заедание зубьев. Оно заключается в местном молекулярном сцеплении контактирующих поверхностей из-за высоких давлений и отсутствия смазочного слоя и происходит обычно при больших скоростях. Разрушение при заедании происходит с вырыванием частиц поверхностей. Этому вредному явлению в большей степени подвержены зубья с незакаленными поверхностями и зубья из однородных материалов. Поэтому в качестве материалов колес применяют или закаленную сталь по закаленной стали, или разнородные материалы — закаленную сталь по брон.- е, текстолиту или полиамидам, а также применяют специальные противозадирные смазки.  [c.242]

Охлаждение стенок также улучшает условия смазки цилиндра, способствует более надежной работе компрессора и позволяет достигать большей быстроходности его и более высоких давлений.  [c.363]

Газотурбинная установка ГТК-10 производства Невского завода им. Ленина (НЗЛ) (рис. 6) состоит из двух имеющих между собой газовую связь турбин высокого давления для привода воздушного компрессора и низкого давления для привода ротора нагнетателя воздушного компрессора камеры сгорания воздухоподогревателя пускового турбодетандера систем смазки, регулирования, защиты и управления, обеспечивающих нормальную работу и обслуживание установки защитной наружной обшивки.  [c.38]

Винтовые насосы подают масло высокого давления через обратный клапан на торцевое уплотнение и опорный подшипник нагнетателя. Часть масла до обратного клапана перепускается в линию смазки перед блоком насосов регулятором перепада, который поддерживает заданное превышение давления масла над газом.  [c.118]

Масло на всасывании гидравлической секции насоса поступает через ручной шаровой кран 40. После гидравлической секции насоса масло высокого давления поступает через обратный клапан 14 на регулятор давления 26, настроенный на Давление 3,52 МПа. Масло с таким давлением поступает в систему регулирования подачи топлива 25, на управление поворотными направляющими лопатками осевого компрессора 24 и на смазку турбодетандера 23 для запуска ГТУ.  [c.121]

Согласно контактно-гидродинамической теории смазки для цилиндрических поверхностей давление в зоне контакта при наличии слоя смазки не распределяется по эллиптическому закону, как это следует из теории Г. Герца и Н. М. Беляева. Это объясняется тем, что в зоне контакта под высоким давлением вязкость смазки увеличивается. На выходе же из зоны контакта масло выдавливается с большой скоростью и вследствие этого подвергается сильному местному разогреву. В результате вязкость масла на выходе резко снижается и происходит разжатие поверхностей из-за уменьшения давления. Пик давления появляется в зоне выхода поверхностей из контакта [54].  [c.112]

Металлокерамические материалы, изготовляемые из металлических порошков путем прессования под высоким давлением и последующего спекания при высокой температуре, получили дальнейшее распространение в машиностроении. Широкой областью их применения являются узлы трения. Составляющие материалов подбирают в соответствии с необходимыми функциями деталей. Нанример металлокерамические фрикционные материалы содержат компоненты служащие основой (железо или медь), служащие смазкой (графит, свинец и др.) и повышающие трение (асбест, кварцевый песок и др.)  [c.66]

В положении I (фиг. 76) оба золотника находятся в крайнем левом положении. При подаче смазки по магистрали I магистраль II соединена с резервуаром станции через реверсивный клапан, т. е. разгружена от высокого давления. При этом под давлением смазки Прежде всего происходит перемещение золотника 2 в крайнее  [c.133]

Расчет гидравлических потерь давления в системе смазки петлевого типа производится аналогичным образом. Так как при большой длине и малом диаметре ответвлений от магистрали к машинам в них могут быть очень большие гидравлические потери, то во избежание слишком высокого давления в системе перед выключением двигателя насоса наиболее удаленные от станции ответвления магистрального трубопровода не следует делать очень длинными, а размеры этих труб необходимо брать примерно равными размеру магистральных труб.  [c.163]


Выбор производительности автоматической станции для проектируемой системы смазки будет в основном зависеть от суммарной емкости питателей, определяемой количеством смазываемых точек и их размерами, и суммарной емкости трубопроводов. От последней будет зависеть объем смазки, который должен быть подан в трубопроводы для компенсации упругости находящейся в них смазки, сжимаемость которой при высоких давлениях в системе нельзя не учитывать. Вследствие незначительной величины упругости трубопроводов ее влиянием можно пренебрегать. При большой суммарной длине трубопровода, даже при полном отсутствии в нем воздуха, объем смазки, подаваемой от насоса через питатели к смазываемым точкам, может составить 20—25% суммарного объема смазки, подаваемой в трубопроводы системы насосом с учетом сжимаемости в них смазки.  [c.163]

На рис. 49, в показан составной поршень ступени высокого давления компрессора, работающего без смазки. По всей длине поршня расположены уплотнительные графитовые кольца /, каждое кольцо состоит из трех сегментов. Между графитовыми кольцами поставлены промежуточные металлические обоймы (дистанционные кольца) 4, при помощи которых регулируются расстояния между поршневыми кольцами. Под графитовыми  [c.111]

Однако в обоих случаях выступают все те же пороки граничной смазки высокие удельные давления из-за малой площади  [c.15]

В эксплуатационных условиях на плунжерном насосе высокого давления пористый материал показал ресурс работы выше 4000 ч при давлении р = 20 МПа скорости скольжения v = 1 1,5 м/с температуре среды 20° С смазке конденсатом (вода, содержащая 0,01% железа, а также аммиак, углекислый газ). Уплотнитель и плунжер за период 4000 ч практически не износились.  [c.120]

Развитие современного машиностроения связано с увеличением скорости скольжения и нагрузок на трущиеся элементы. При этом значительно возрастают температуры в зоне контакта когда они превышают 250° С [64], применять обычную смазку нельзя. Поэтому для поверхностей, работающих в тяжелых условиях, необходимы более устойчивые защитные пленки. Материалы, пригодные для этой цели, представляют собой особый класс граничных смазок, называемых смазками для высоких давлений.  [c.47]

Толщина покрытия должна находиться в пределах от 5 до 8 мк. Оловянистое покрытие хорошо адсорбирует и удерживает смазку, весьма пластично, создает хорошее прилегание колец к стальной поверхности цилиндра и не вызывает местных высоких давлений, обеспечивает при работе малые коэффициенты трения и малое развитие местных температур, обладает способностью образовывать н постоянно восстанавливать устойчивые пленки вторичных структур в короткий период времени.  [c.134]

При температурах ниже точки плавления, цепочки полярных молекул углеводородов, имеющих активные концы, могут быть адсорбированы окисленными металлическими поверхностями. Несколько рядов мотекул могут образовать граничный слой смазки толщиной порядка 200 А. Предельной формой граничного слоя является твердая пленка, образующаяся между скользящими поверхностями. Такая разновидность смазки относится к твердой смазке или смазке высокого давления (ВД). Определенные органические вещества (жирные кислоты) могут вступать в химическую реакцию с металлической поверхностью или с окисной пленкой с образованием металлических мыл, которые являются очень эффективной твердой смазкой при температурах ниже точки их плавления.  [c.87]

Это обстоятельство используют в некоторых конструкиияч для подвода смазки к труднодоступным поверхностям (например, в ш 1Тлнно-поршнеЕых механизмах смазку в поршневые пальцы отбирают из шатунных подшипников через отверстия, расположенные в зоне высоких давлений).  [c.364]

Иссушая способность пористых подшипников, работающих в гидродпнампческом реж Н-ме (оби.тьная смазка, высокая частота враш,еиия), снижена по сравнению с массивными подшипниками. Масло в нагруженной области уходит из зазора в поры и перетекает по стен-, кам втулки отчасти к торнам, где выходит наружу, отчасти в ненагруженную зону, откуда снова поступает в зазор. Таким образом, в стенках втулки образуется непрерывная циркуляция масла, интенсивность которой (а следовательно, и степень снижения несущей способности) зависит от проницаемости материала подшипника (размеров и относительного объема пор), геометрических размеров вту.тки (длины и толщины), вязкости масла (температуры подшипника), давления в нагруженной зоне и других факторов  [c.383]

В дальнейшем Клод ввел два существенных усовершенствования. Во-иервых, он нашел (в 1912 г.), что, изготовляя поршневые кольца для детандера из сухой обезжиренной кожи, можно отказаться от смазки петролейным эфиром и значительно снизить тем самым износ цилиндра. Во-вторых, он ввел в схему двухступенчатый детандер и применил о кижение под давлением. Воздух высокого давления (фиг. 68), пройдя через главный теплообменник, разделяется в точке а на два потока, один из которых направляет-ся в детандериый цилиндр высокого давления А, другой — в верхнюю сек-  [c.86]

Другое решение, в котором нет необходимости заполнения капсулы гелием под высоким давлением ирп комнатной температуре, было предложено де-Клерком [110]. Им был сконструирован вентиль, изображенный на фиг. 91. Седло вентиля изготовляется из феррохромового сплава, и оба конца его спаиваются со стеклянными трубками. Запирающая пгла сделана из стали. В контейнер поступает необходимое количество гелия, после чего вентиль запирается с помощью длинного металлического стержня, который затем может быть удален. Измерительные катушки моста взаимоиндукций наматываются такпм образом, чтобы поле в месте расположения вентиля было равно нулю. Трудность пспользовання таких вентилей состоит в невозможности пользоваться смазкой. Коническая часть запирающей иглы должна быть настолько хорошо отцентрована по отношению к седлу вентиля, чтобы пленка гелия, имеющая толщину около 3,5 -10 см, не могла бы переползать сквозь вентиль. Это очень жесткое требование, и никогда нельзя быть уверенным в том, что вентиль, который хорошо работал в течение одного гелиевого эксперимента, будет удовлетворительно работать в течение следующего. При наиболее благоприятных обстоятельствах время отогрева такого устройства от температуры около 0,05 К до Г К составляло примерно 2 часа.  [c.562]


Жаровые трубы, 1ереходные детали и другие горячие поверхности эффективно охлаждают воздухом. Воздух, поступающий из осевого компрессора, состоит из воздуха, отбираемого с десятой ступени компрессорного воздуха высокого давления для уплотнений выходного воздуха компрессора. Воздух, отбираемый с десятой ступени, идет на уплотнение от потери смазки в опорных подшипниках. Затем через маслостоки он выходит из подшипников в маслобак. Его же используют на охлаждение, тыловой полости колеса турбины первой ступени, а также передней и тыловой полостей колеса турбины второй ступени. Кроме того, воздух  [c.55]

Усталостная трещина на шарике или на дорожке трения шарикового подшипника может образовываться или под поверхностью и распространяться наружу, или на поверхности и распространяться вглубь. Это определяется прежде всего условиями трения, в частности, свойствами смазки [25]. При отсутствии в смазке поверхностно-активных веществ зарождение трещины происходит на поверхности, так как современные стали содержат много включений, препятствующих подповерхностному течению. Трещины распространяются в глубь материала под небольшим углом к поверхности, а затем параллельно последней. При тяжелых режимах нагружения давление под точкой контакта подшипника может достигать 400 кгс/мм Образующиеся на поверхности трещины попеременно по мере прохождения шарика подвергаются действию очень высоких и очень низких давлений. Попадающая в трещины смазка также подвергается действию очень высоких давлений и попеременно то попадает в трещину, то выбрасывается из нее. Многократное повторение этого процесса полирует стенки трещины, образуется слой Бейльби, который разрушается с образованием тонких чешуек. Чешуйки, сформировавшиеся в трещине или занесенные Б нее смазкой, образуют сферы в результате пластической деформации. Детальный механизм этого явления до конца еще не ясен.  [c.99]

В большинстве конструкций тормозов находит применение сухое трение фрикционных материалов по металлу, и только в некоторых конструкциях осевых тормозов необходима смазка трущихся поверхностей. Условия работы тормозных устройств различных машин весьма разнообразны как по режиму работы, так и по величинам скоростей скольжения, давлений и температур. В некоторых наиболее легких условиях работы до сих пор еще находят применение в качестве фрикционного материала колодки из дерева несмолистых пород. В качестве рабочей поверхности используют обычно торец дерева. Эти колодки обеспечивают достаточно высокий коэффициент трения, но имеют весьма низкую теплостойкость. При высоких температурах, развивающихся при трении, трущаяся поверхность таких колодок обугливается, что приводит к резкому изменению коэффициента трения. В целях предотвращения обугливания дерево рекомендуется пропитывать под высоким давлением сернокислым или фосфорнокислым аммонием. К недостаткам деревянных колодок относятся, кроме того, неравномерность изнашивания торцов вследствие неодинаковой плотности слоев дерева, а также большая гигроскопичность деревянных колодок и их способность коробиться и растрескиваться. Однако благодаря дешевизне этого материала, а также простоте изготовления деревянные колодки находят еще довольно широкое применение (например, в тормозах трамваев, подвесных канатных дорог и фуникулеров и т. п.). В ряде случаев в качестве фрикционного материала применяется текстолит, удовлетворительно работающий при температурах до 100° С. При нагреве сверх 120° С вследствие неравномерного выгорания пропитки и образования быстроизнашиваемых вздутий текстолитовые накладки быстро портятся. В настоящее время отечественная химическая промышленность выпускает большое количество разнообразных фрикционных материалов, весьма сложных по своему составу, обладающих различными фрикционными свойствами и предназначенных для различных условий применения.  [c.526]

На фиг. 46 показапа также схема включения контактного манометра в цепь сигнальной лампочки (сигнал высокого давления) и в цепь сирены (аварийный сигнал низкого давления). Помимо сигнализации, в системах жидкой смазки второй манометр обычно используется для включения двигателя резервного насоса при понижении рабочего давления. В этом случае максимальный контакт прибора используется для выключения двигателя при повышении  [c.81]

Гидравлические потери в трубах при прокачивании по ним густой смазки зависят от 1) консистенции смазки, 2) ее температуры, зависящей от температуры окружающего воздуха, 3) расхода смазки (или ее скорости) и 4) длины труб. Этими факторами определяется диаметр труб, которые требуются для надлежащего распределения смазки без создания чрезмерно высокого давления в системе. Как показала практика, максимальное давление в системе, имеющее место в нагнетательной магистрали у насоса, не должно превышать 80— 100 кПсм , так как при более высоких давлениях из густых сма-  [c.155]

Для соединения трубопроводов густой смазки, работающих под давлением до 100 кПсм , применяются рукава высокого давления с внутренними диаметрами 12 и 20 мм по ГОСТ 6286-52, изготовляемые теми же заводами. Рукав состоит из внутреннего слоя маслостойкой резины, металлических оплеток, промежуточных резиновых слоев, текстильных оплеток и наружного резинового слоя (фиг. 105,6) В тех случаях, когда приходится подводить густую или жидкую смазку к подвижным точкам, находящимся в зоне высокой температуры, применяются герметические соединения металлических рукавов (фиг. 106), состоящие из гибкого металлического рукава по ГОСТ 3575-47 и комплекта концевой арматуры типа ЮА. Эти металлические рукава с арматурой изготовляются заводом Метал-лорукав . Техническая характеристика герметических соединений приведена в табл. 31.  [c.167]

Для присоединения гибких дюритовых щлангов и рукавов высокого давления к трубопроводам и точкам смазки применяются специальные наконечники единой конструкции.  [c.167]

Эксплуатировать пневмогидравлические системы приходится в условиях большой запыленности, значительной влажности, резкого изменения температур атмосферы, ограниченного рабочего пространства и неравномерных нагрузок на исполнительные органы машины. Все это предъявляет повышенные требования как к конструкции гидропневмопривода в целом, так и к их элементам, например уплотнениям. Нормальная работа уплотнений зависит прежде всего от состояния рабочей жидкости, которая одновременно является носителем энергии и смазкой, При этом уплотнения подвергаются воздействию переменных давлений, скоростей и температур. Скорость движения жидкости в отдельных элементах гидропривода достигает 80 м/сек, а обычный рабочий интервал температур колеблется в пределах 283—353 К. В отличие от гидропривода трущиеся поверхности уплотнительных устройств пневмоагрегатов необходимо специально смазывать. Так как в процессе расширения воздуха его температура значительно понижается, то для смаз и необходимо применять масло с низкой температурой застывания (не выше 268—263 К). Таким маслом является масло индустриальное 30. Так как полного осушения воздуха в пневмоприводе добиться нельзя, то охлаждение иногда приводит к обмерзанию пневматических агрегатов, особенно интенсивному при дросселировании воздуха в системах высокого давления. Эти режимы могут допускаться только кратковременно.  [c.34]

Сильное влияние процессов окисления смазки и сопряженного с ней металла на противоизносные и антифрикционные свойства нефтяных масел было показано в работах, проведенных в Институте нефти АН СССР под руководством Г. В. Виноградова [76], где эти явления изучались при очень высоких давлениях в зонах трения. Эти исследования показали, что с переходом от азота к воздуху, а затем к кислороду наблюдалось повышение критических нагрузок и износа при нагрузках ниже критических. С повышением окислительной активности газовой среды улучшалась способность нафтено-парафиновой фракции обеспечивать приработку разрушенных поверхностей трения. Для опытов, проведенных в среде кислорода, характерной была низкая интенсивность процессов заедания, в результате чего переход к режимам заедания сопровождался плавным, но довольно быстрым увеличением износа.  [c.50]


Применение наполненных фторопластов в машиностроении обусловливается высокой химической стойкостью, антифрикционными, термическими и самосмазывающими свойствами этих материалов. Все более широкое применение наполненные фторопласты находят в качестве уплотнительных материалов, из которых изготовляются поршневые, уплотнительные, опорные и сальниковые кольца для компрессоров среднего и высокого давления, работающих без смазки цилиндров.  [c.203]

Пассивная опора пресса (рис. 25, е) сферическая. Центр сферы расположен не на поверхности опорной плиты, а ближе к внутренней части опоры. Сфера крепится к траверсе через центральную шаровую опору и периферийные подпружиненные болты. Особенность сферической опоры — смазка под высоким давлением, сохраняющим жидкостное трение между полусферами независимо от действующей нагрузки. Смазка поступает через специальный золотник, открывающий доступ масла в полость между сферами при уменьшении зазора. Для предотвращения утечек масла по периферии подвижной полусферы установлено резиновое уплотнительное кольцо, распираемое внутренним давлением. Сферическая пассивная опора в значительной мере сужает возможности пресса, поскольку при любых режимах, осуществляемых на активной опоре, равнодействующая сил реакции образца будет проходить через центр пассивной опоры. Таким образом, эксцентрпситет, а также наклон поверхности пассивной опоры, оказывается неуправляемым. Для гашения энергии, освобождаемой при разрушении образца, предусмотрены пружинная подвеска пассивной сферической опоры и пружинное крепление фундаментного блока, на котором установлен пресс. Масса пресса около 150 т, масса фундаментного блока около 100 т. Последний подвешивают на четырех болтах через тарельчатые пружины. Собственная частота колебаний системы около 5 Гц, а коэффициент демпфирования более 90%. Для демпфирования служит специальное устройство гпдроцилиндров пресса (рис. 25, д), торцы штока плунжеров превращены в гидравлические, связанные между собой демпфирующие оппозитные цилиндры. Эффектив1юСть демпфирования последних такова, что внезапное разрушение образца при нагрузке 20 МН вызывает реактивную силу плунжера не выше 100 кН.  [c.76]

Из ответственных изделий и сооружений на монтаже чаще всего приходится сваривать конструкции монтажных подъемных устройств (мачт, укосин и т. п.), монтажные стыки в монтируемых подъемных машинах, монтажные стыки и фасонные части трубопроводов среднего и высокого давления, монтажные стыки и фасонные части трубопоровод цент]рализованной смазки, цистерны, баки и другие емкости для хранения жидкостей и т. п.  [c.161]


Смотреть страницы где упоминается термин Смазка высокого давления : [c.311]    [c.545]    [c.44]    [c.104]    [c.125]    [c.133]    [c.156]    [c.19]    [c.89]    [c.212]    [c.228]   
Краткий справочник металлиста изд.4 (2005) -- [ c.885 ]



ПОИСК



Давление высокое

Смазка под давлением



© 2025 Mash-xxl.info Реклама на сайте