Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформирование материала пластическое режимов

В отличие от жесткости режима деформирования при мягком нагружении значительную роль приобретает одностороннее накопление пластических деформаций, вызванное так называемым 80 эффектом. Под 80 эффектом понимается различное поведение материала при растяжении и сжатии. Это различие состоит в том, что при деформировании материала сжатием требуются, как правило, более высокие напряжения, чем при деформировании растяжением. Количественно 80 эффект определяется по кривым а—6 при испытании на растяжение и сжатие и выражается в виде 0= а — Ор, где и Ор — соответственно напряжения течения при сжатии и растяжении образца при одной и той же величине деформации .  [c.94]


Зависимость коэффициента вязкости от величины и скорости деформации (снижение вязкости с возрастанием г и е) позволяет объяснить влияние на кривую деформирования материала режима нагружения монотонное возрастание сопротивления ири испытаниях с постоянной скоростью деформации или нагружения, монотонный рост величины пластической деформации при постоянной нагрузке, если вязкость зависит только от скорости деформации, и появление особенностей [зуб  [c.17]

В зависимости от температурно-силового режима нагруже-Бия движение линейных и точечных дефектов вносит различный вклад в процесс пластической деформации, и его анализ требует совместного рассмотрения диффузионного и дислокационного механизмов деформации. В дальнейшем ограничимся рассмотрением дислокационной модели, которая, по данным работ [324, 362—364, 441], контролирует процесс высокоскоростной деформации в металлах и широко используется для расчета кинетики деформирования материала в волнах нагрузки [180]. Исследование волновых явлений в свою очередь позволяет оценить значения параметров дислокационной структуры [325].  [c.27]

Рассмотрим некоторые особенности процессов склерономного упругопластического деформирования при заданном режиме циклического нагружения. Возможны два типа таких процессов, начальное нагружение может привести к пластической деформации, которая остается неизменной, так как в ходе дальнейшего нагружения материал не выходит из области упругого деформирования, и происходит так называемое приспособление материала или некоторого конструкционного элемента к заданным условиям циклического нагружения или сопровождается пластическим деформированием попеременно в прямом и обратном направлениях.  [c.14]

Для первого режима этапы деформирования материала детали на обогреваемой стороне О—1 — 2, 2 — 3 и 3 — 5 соответствуют прогреву детали с выходом на стационарный режим (рис. 1.12, в) полной релаксации остаточных напряжений на этом этапе и медленному останову, при котором градиенты температур максимальны. Очередной цикл термомеханического нагружения определяется как 3—1 — 2 — 3. За время пуска агрегата и прогрева детали материал претерпевает пластическое деформирование дважды.  [c.22]

При определении режима испытания и энергии, расходуемой на разрушение образца, необходимо учитывать вязкоупругое и пластическое деформирование материала, а также явления, возникающие в связи с течением материала и поведением его после нарушения сплошности.  [c.31]


Особенности метода связаны с кинетикой тепловыделения и пластического деформирования материала. На рис. 8.10 представлены схемы типовых осциллограмм основных параметров режима сварки трением с непрерывным приводом.  [c.502]

Сущность сварки давлением состоит в совместном пластическом деформировании материала по кромкам свариваемых деталей. Благодаря пластической деформации облегчается установление межатомных связей соединяемых частей. Для ускорения процесса применяют сварку давлением с нагревом. В некоторых случаях нагревают до оплавления свариваемые поверхности металла или промежуточные вспомогательные прокладки давление может осуществляться в непрерывном или прерывистом режимах.  [c.8]

На рис. 3.18 показаны кривые деформирования материала диска, которые приняты в расчете в качестве исходных. На этой сетке наглядно показан процесс расчета в виде изменения напряжений = с во и деформаций е,о = 8до в центре диска в процессе нагружения. Расчетные точки, соответствующие режимам, отмечены кружочком, цифрой указан номер режима. Цифра, стоящая в скобках, означает номер цикла. В центре диска пластические деформации возникают только в 1-м цикле нагружения. После разгрузки при повторном нагружении пластическая деформация не увеличивается.  [c.393]

Привлечение для анализа волновых процессов численных методов расчета на основе априорной модели материала [165, 249, 383], реализация режима нагружения материала, определяемого кинетикой деформирования и изменяющегося при распространении волны, недостаточно яркое проявление реологических характеристик материала на конфигурации фронта [301] существенно затрудняют исследование поведения материала при высокоскоростном деформировании путем изучения закономерностей распространения упруго-пластических волн.  [c.14]

В настоящее время определяющих уравнений состояния, позволяющих описать реологическое поведение материалов с учетом режима нагружения, нет, поэтому для выполнения расчетов используются упрощенные модели материала [153, 225, 323], неотражающие всей сложности поведения материала в процессе-деформации и, следовательно, применимые для ограниченного диапазона условий нагружения. Успехи в построении уравнений состояния на основе физических механизмов пластической деформации, например на основе дислокационной модели пластического течения [74, 175, 309], имеют ограниченное значение. Зависимость сопротивления деформации от мгновенных условий нагружения (температура, скорость деформации и др.) и всей истории предшествующего нагружения, которая определяет изменение в процессе деформирования большого числа параметров, характеризующих микро- и макроструктуру материала, за исключением некоторых частных случаев, не позволяет в настоящее время дать количественную оценку инженерных характеристик сопротивления материала.  [c.15]

Таким образом, на основе дислокационной модели пластического деформирования металлов общая зависимость кривой деформирования от режима нагружения может быть представлена в виде поверхности трехмерного пространства F a, ёэ, ёп) = = 0, где величина эквивалентной деформации определяет структурное состояние материала в момент измерения, сформированное в результате предшествующего нагружения. Существенное влияние истории нагружения на процесс высокоскоростного деформирования требует его учета при обобщении результатов испытания с различными режимами нагружения.  [c.48]

Кривые, приведенные на рис. 3.7, характеризуют сопротивление малоцикловой усталости материала при жестком нагружении в зависимости от режима термомеханического нагружения. Малоцикловую долговечность оценивают по кривым 1 н 2, если известна полная упругопластическая деформация в цикле деформирования, и по кривым 3 и4, если известна пластическая составляющая деформаций.  [c.139]


Он вновь и вновь выступал за взаимосвязанный единый неразрывный комплекс технология — кузнечная машина — технология. Любая поковка в зависимости от марки материала, размеров и конфигурации, — подчерки- вает А. И. Зимин, — требует для своего технологического оптимума применения соответствуюш его термомеханического режима ковки, понимая это в широком смысле, с включением характера силовых воздействий рабочих частей машины на поковку при ее пластическом деформировании. Для одних поковок требуются невысокие скорости деформирования другие, наоборот, лучше штампуются при высоких скоростях третья требует особого силового воздействия, которое нельзя назвать ни простым нажатием, ни обычным ударом четвертые — быстрого протекания силового воздействия, но не ударного характера и т. д. Приведенных вариантов силового воздействия уже достаточно, чтобы показать, что при проектировании новых машин заданного технологического назначения технологическое задание но оптимуму операций штамповки, для которых проектируется машина, должно быть решено, подготовлено и сдано в распоряжение конструкторов. Это приобретает особое значение в последнее время, когда в кузнечно-штамповочные цехи начинают внедряться для обработки давлением труднодеформируемые, тугоплавкие металлы и сплавы, а также сплавы с неоднородной, гетерогенной структурой. Для пластического деформирования этих металлов и сплавов в некоторых случаях нельзя применять старые машины.  [c.81]

Образование петель пластического гистерезиса возможно только при наличии так называемой деформационной анизотропии материала, частным проявлением которой при линейном напряженном состоянии является эффект Баушингера пределы пропорциональности или текучести периодически изменяются с изменением направления пластического деформирования, т. е. с переходом от пластического растяжения к сжатию и наоборот. Так на диаграмме рис. 1.7 ордината точки D, отвечающей пределу пропорциональности при сжатии, следующем за растяжением, меньше ординаты точки А, соответствующей началу разгрузки. Ордината точки G, отвечающей пределу пропорциональности при дальнейшем растяжении, не совпадает с ординатой точки Е. Существенно, что в гипотетическом случае изотропного упрочнения, при котором ординаты точек А к D должны совпадать, материал приспособился бы к любому стационарному режиму нагружения с заданным  [c.15]

Технологические причины, вызывающие макро- и микрогеометрические неровности, различны. Шероховатость поверхности при механической обработке образуется в первом приближении, следами режущих лезвий инструмента. Процесс переноса следов режущего инструмента зависит от многих факторов и их сочетаний от режимов обработки, кинематических схем резания, пластического деформирования обрабатывае.мого материала, колебательных процессов в системе станок — деталь — инструмент и т. п.  [c.142]

Режимы пуска и останова вносят существенные изменения в процесс деформирования материала. Для режима при наличии резкого охлаждения циклическое деформирование протекает в соответствии с диаграммой 1 — 2 — 3 — 4 — 5—1 (см. рис. 1,12, е). При этом линия 5—1 — 2 соответствует повторному пуску, линия 2 — 3 определяет релаксацию остаточных растягивающих напряжений при стационарном режиме, а линия 3 — 4 — 5 — резкому охлаждению детали и последующему естественному выравниваник> температуры. Важными параметрами, характеризующими работу материала в этом случае, являются пластические деформации  [c.22]

Переход от жесткого к мягкому режиму нагружения вносит изменения в характер деформирования материала. При мягком нагружении, как и при >)<естком, изменение характера деформирования можно разбить на три периода. В первом периоде протяженностью от единиц до нескольких десятков циклов происходит некоторое увеличение ширины петли пластической деформации, во втором периоде для циклически разупрочняющихся материалов ее размах непрерывно возрастает. Для циклически упрочняющихся материалов ширина петли сокращается, а для циклически стабильных материалов она постоянна. В третьем периоде для всех материалов характерно увеличение ширины петли пластической деформации. Несущая способность определяется в основном длительностью первого и второго периодов, которые занимают более 0,9 от общей долговечности.  [c.94]

В последние десятилетия получили распространение систематические исследования циклической прочности материалов в области малоцикловой усталости (деформации лежат в пластической области), что особенно характерно для зон концентрации напряжений. Однако недостаточно полно изученным остается вопрос о сопротивлении мапоцикповому разрушению при попигармониче-ском нагружении, в том числе при высоких температурах, когда проявление температурно-временных эффектов может инициироваться высокочастотной составляюш ей циклических напряжений. Режимы нагружения, при которых на основной процесс цикличе ского изменения напряжений накладывается переменная состав-ляюЕдая более высокой частоты, свойственны элементам тепловых и энергетических установок, лопастям гидротурбин, лопаткам газотурбинных двигателей и ряду других деталей и узлов. Исследования сопротивления малоцикловой усталости при двухчастотных режимах нагружения выполнялись в весьма ограниченном объеме и без привлечения методов, позволяющих достаточно полно охарактеризовать особенности циклического деформирования материала в упругопластической области.  [c.15]

В связи с разработкой норм прочности для аппаратов химического машиностроения широкие исследования малоцикловой прочности при двуосном напряженном состоянии проведены К. Д. Айвзом, Л. Ф. Куистрой и И. Т. Таккером на трех типичиых материалах для сосудов давления. Круглые пластины 1 (рис. 2.55, а) испытывали в условиях переменного циклического изгиба за счет гидравлического давления, подаваемого попеременно в обе полости камеры 2. Циклические деформации в центральной зоне пластины непрерывно измерялись с помощью тензодатчиков, а обратная связь при автоматическом управлении процессом циклического нагруже-иия осуществлялась с помощью штока 3. Управляющая система обеспечивала испытания в жестком режиме циклического деформирования материала. В центре пластины на каждой из поверхностей при ее нагружении возникает двумерное поле деформаций, причем реализуется только случай равенства радиальной и окружной деформации (ь>/ее=1), а зона одинаковых пластических деформаций охватывает значительную центральную часть пластины.  [c.118]


В экспериментах на одноосное растяжение образца такого состояния в его рабочей части можно достичь только специальным образом, контролируя нагрузку (снижая действующее напряжение до нуля) на заключительной стадии деформирования. При других способах нагружения, а также при работе материала в реальных конструкциях, разрушение происходит при ненулевых напряжениях, и критическое значение поврежденности т/ зависит от действующих напряжений, физикомеханических характеристик материала и ряда других факторов. Экспериментальные исследования свидетельствуют, что в зависимости от свойств материала и режимов нагружения а>/ может принимать значения 0,2 < со/ < 0,8. Кроме того, материал может быть разрушен в упругой области после некоторой истории деформирования в пластической области, в результате которой была накоплена повреж-денность со < ш/.  [c.383]

Была исследована закономерность формирования усталостных бороздок в цикле нагружения в соответствии с закономерностями формирования сигналов акустической эмиссии (АЭ), позволяющих разделить процессы дискрет ного подрастания трещины и процессы пластического деформирования материала [258—260]. Испытания проводили при стационарном режиме нагружения прямоугольного образца из сплава Д16Т и при стационарном режиме путем перехода от меньшей нагрузки к большей и от боль-,  [c.202]

Многочисленные исследования и производственный опь предприятий показывают, что способами пластического деформирования можно получить существенное улучшение качества поверхности, поверхностного слоя, повышение точности обрабатываемых деталей. Например, при обкатывании и раскатывании многороликовыми, жесткими планетарными и дифференциальными головками деталей типа тел вращения даже за один проход представляется возможным добиться уменьшения шероховатости поверхности с 5—6 до 10—12 класса чистоты, увеличение твердости поверхностного слоя, на 20—25% и коэффициента уточнения в 2 раза и более. Исследованиями установлено, что при использовании калибрующе-упрочняющих методов твердость поверхностного слоя, глубина наклепа и величина остаточных напряжений возрастают с увеличением давления между обрабатываемой деталью и инструментом. В зависимости от марки обрабатываемого материала и режимов обкатывания и раскатывания глубина наклепанного слоя может изменяться в пределах от нескольких микрометров до десятков миллиметров, а твердость поверхностного слоя увеличивается на 40—50%. Обкатывание и раскатывание способствуют повышению пределу усталости, улучшению чистоты обрабатываемой поверхности, но вместе с этим чрезмерное давление может вызвать перенаклеп поверхности, ее шелушение и отслаивание.  [c.315]

В большинстве случаев после ВМТО проводится старение выделяющиеся при этом частицы карбидных или интерметал-лидных фаз способствуют дальнейшему повышению прочностных свойств обрабатываемого материала и одновременно увеличивают стабильность получаемого структурного состояния. Деформирование заготовок при ВМТО можно осуществлять различными способами прокаткой, волочением, штамповкой, выдавливанием и др. Возможные виды пластической деформации при ВМТО, их технологическое выполнение и режимы обработки подробно рассмотрены в работе 172].  [c.45]

Измерение микротвердости и микроструктуры в де-формированном поверхностном слое образца показало резкую неравномерность ее распределения и различную степень пластической деформации. Формирование структуры рабочего слоя в процессе удара определяется исходной структурой материала, продолжительностью времени контакта, контактной температурой, скоростью приложения нагрузки. При и = 3,2 м/с и W== ,2 Дж максимальная микротвердость на поверхности удара составляет 12 000 МПа, минимальная — 4200 МПа. Измерение микротвердости по поверхности и по глубине образца после удара показало, что распределение микротвердости в зоне удара неравномерное. Неравномерно распределяется и температурное поле. Динамический характер пластического деформирования, во время которого теплообмен в зоне контакта практически отсутствует, вызывает на пятнах фактической площади контакта мгновенные скачки температуры, т. е. температурные вспышки, величина которых при тяжелых режимах намного превышает среднкно температуру. Несмотря на то, что глубина действия температурных вспышек при ударе локализуется в слое толщиной несколько микрометров, они способствуют структурным превращениям и изменению микротвердости. В некоторых случаях удалось наблюдать полоски вторичной закалки. Их микротвердость составила 12 880 МПа. Микротвердость подстилающего слоя на расстоянии 0,01 мм от поверхности меньше мик-ротвердости металлической основы и составляет 3300 МПа, что соответствует приблизительно температуре 400 500° С. Следовательно, при единичном ударе в зоне контакта в отдельных микрообъемах возникают температурные скачки, упрочняющие эти участки. Под ними и вблизи них находятся участки, микротвердость которых ниже исходной, а температура достигает лишь температуры отпуска. Наблюдаемые температурные изменения связаны с изменениями структуры и прочностных свойств соударяющихся материалов.  [c.146]

На рис. 28 в качестве примера приведены наиболее характерные кривые деформирования сплава ХН70ВМТЮФ в указанных условиях нагружения. Опыт по режиму 1 (см. табл. 2) подтверждает существующее мнение ([16, 71] и др.) о значительном влиянии деформаций ползучести на пластические свойства материала при последующем деформировании. Деформация ползучести, развивающаяся при переменной температуре 800-2-500° С в течение 40 мин, составляла 2%, т. е, примерно десятую долю от ресурса пластичн01сти сплава при = 500° С однако повреждение оказалось настолько значительным, что последующее  [c.46]

Пример релаксации термических напряжений в жестко закрепленном стержне при его нагреве и выдержке в течение 10,7 мин и схема процесса развития деформаций приведены на рис. 39. Процесс циклического термического нагружения, при котором каждый цикл осуществляется с выДержкой при максимальной температуре, сопровождается процессом циклической ползучести, однако значительно более сложным, чем циклическая ползучесть при изотермическом нагружении. Наиболее существенно то, что в каждом цикле при охлаждении материал деформируется нагрузкой противоположного знака (в рассматриваемом случае — растяжением), которая вызывает пластическую деформацию. Если принять, что процессы развития деформаций ползучести при релаксации напряжений и постоянном напряжении — процессы одного типа, при которых большое значение имеет степень искажения решетки кристаллов, то влияние холодного наклепа, происходящего в каждом цикле термонагру-жения, должно быть значительным. Оно проявляется в уменьшении числа циклов до разрушения (см. тл. III) подобно тому, как при предварительном пластическом деформировании снижаются длительная статическая прочность (время до разрушения) и пластичность. В табл. 12 приведены значения этих характеристик, полученные при испытании сплава ХН77ТЮР по режиму, соответствующему техническим условиям на сплав /=750°С 0=350 МПа. Величина наклепа определялась степенью пластического деформирования образцов  [c.103]

Нео1бходимо также иметь в виду, что иногда при соблюдении внешних условий жесткого нагружения по схеме Коффина размах деформаций Ае не остается постоянным в течение всего испытания вследствие локализации зоны пластического деформирования и изменения циклических свойств материала. Это означает, что испытание проводят на нестационарном режиме нагружения (по размаху деформаций). В этом случае необходимо в уравнении (5.35) учитывать непостоянство Ле, что можно сделать, например, в виде  [c.124]


Таким образом, хотя при нагружении с нагревом до 450° С в большинстве случаев не наблюдалось интенсивного карбидообразо-вания, перераспределение легирующих и карбидообразующих элементов имело место при всех режимах нагружения (рис. 3, а, в). При этом, как и при 650°С [3], углерод мигрировал к границам зерен и карбиды, как правило, залегали в основном по границам и в приграничных участках зерен, охрупчивая последние. Характер распределения титана и хрома также видоизменялся под действием циклической нагрузки и нагрева титан, сравнительно равномерно распределенный в исходном состоянии материала, в процессе упруго-пластического деформирования скапливался в отдельных зонах, наблюдаемых на рис. 3, б, з в виде продолговатых полос, образующих своеобразную сетку концентрация хрома в отдельных зонах также видоизменялась и к моменту разрушения в структуре наблюдались участки с пониженным и повышенным содержанием хрома.  [c.70]

Реакция материала на импульсную нагрузку определяется конкретной физической природой материала и реальным процессом нагружения (законом изменения напряжений или деформаций во времени). Для большинства конструкционных материалов имеется широкий круг режимов нагружения (для металлов — упругое или упруго-пластическое деформирование в определенных пределах по деформации), не вызывающих нарушения сплошносги материала, что допускает использование методов механики сплошной среды. Достижение критических условий нагружения сопровождается развитием процессов разрушения (зарождением микротрещин и их интенсивным развитием), ведущих к нарушению сплошности. Изучение таких процессов требует применения специфических методов экспериментальных исследований и анализа результатов. Следовательно, реакция материала на действие импульсной нагрузки может  [c.9]

Определяющие уравнения состояния при упруго-пластпческом. деформировании описывают функциональную связь процессов нагружения и деформирования с учетом влияния температуры для локального объема материала, т. е. связь составляющих тензоров напряжений ац, деформаций гц и температуры Т с учетом их изменения от начального to до заданного t момента времени F[Oij(t), sij(t), T(t)]=0. Конкретные формы такой связи, представленные в литературе, основаны на упрощающих допущениях, применение которых экспериментально обосновано для ограниченного диапазона режимов нагружения. Учитывая кратковременность процессов импульсного нагружения, в большинстве случаев процессами теплопередачи можно пренебречь и с достаточной для практических целей точностью принять процесс адиабатическим. Изменение температуры материала в процессе нагружения в этом случае определяется адиабатическим объемным сжатием (изменением объема в зависимости от давления), переходом механической энергии в тепловую в необратимом процессе пластического деформирования и повышением энтропии на фронте интенсивных ударных волн (специфический процесс перехода в тепло части механической энергии при прохождении по материалу волны с крутым передним фронтом, в результате которого кривая ударного сжатия не совпадает с адиабатой [9, И, 163]).  [c.10]

Характер зависимости пластических циклических и односторонне накопленных деформаций от числа циклов нагружения и времени в общем случае определяется историей нагружения. Учитывая многообразие возможных сочетаний режимов нагружения по скоростям, температурам и длительностям вьщержек, для решения конкретных задач об определении НДС целесообразно использовать экспериментальные диаграммы деформирования, полученные для конкретных условий рассматриваемой задачи. Указанная необходимость получения прямых зкспериментальных данных и невозможность прогнозиров ия максимальных повреждающих эффектов обусловливают требование проведения прямых экспериментов по определению сопротивления деформированию конструкционного материала при наиболее опасных режимах термомеханического нагружения.  [c.22]

Модели физически нелинейной среды при циклическом упруго-пластическом деформировании. При анализе кинетики НДС в наиболее нагруженных зонах элементов конструкций необходимо использовать модели физически нелинейной среды, достаточно полно отражающие основные особенности поведения материала в условиях, близких к эксплуатационным. В общем случае такие модели устанавливают нелинейную связь между циклическими напряжениями и деформациями, либо между их производными, причем указанные зависимости (уравнения состояния, или определяющие уравнения) должны учитывать характерные режимы деформирования и нагрева, а также влияние истории нагружения (поцикловой и временной).  [c.78]

Таким образом, приведенные вьпие уравнения (7.9) —(7.29) позволяют на стадии проектирования провести приближенную оценку напряженно-деформированных состояний в конструкциях ВВЭР при возникновении местных и общих пластических деформаций для целого ряда зон и режимов нагружения, если известны теоретические коэффициенты концентрации Лд, свойства материала ( 0,2,0 , i/ t), уровень номинальных напряжений а , а также распределение температур или упругих термонапряжений.  [c.224]

Дальнейшим усложнением условий нагружения относительно простого циклического является блочное ступенчатое нагружение, связанное, например, с периодическими изменениями уровней нагруженности конструкций в эксплуатации. В этом случае могут изменяться как уровни действующих циклических напряжений, так и количество циклов на канчдом уровне. Исследование характера развития циклических деформаций при различных сочетаниях подобного рода режимов нагружения показало [3], что и в этом случае закономерности изменения величин циклической бЛ и односторонне накапливаемой пластических деформаций, полученные на основе представлений о существовании обобщенной диаграммы циклического деформирования с учетом некоторых особенностей условий нагружения, дают удовлетвори-те.льные результаты. При этом было предложено для вычисления величин б< > и при переходе с уровня нагружения 1 на уровень 2 (обозначены первой цифрой индекса у номера полуцикла к на рис. 4.2) на последнем за начало отсчета принимать номер полу-цикла к 1, соответствующий на этом уровне поврежденности материала за всю предыдущую историю нагружения. Исходя из этого положения, были получены расчетные кривые изменения б для стали 15Х2МФ при чередовании блоков нагружения по 50 циклов на уровнях амплитуд относительных напряжений = 1,06 и бо2 = 1,11, причем нагружение начиналось с меньшего уровня 1. Из рис. 4.2, а, на котором кроме расчетных кривых нанесены точками отвечающие этим условиям нагружения экспериментальные данные, видно, что между ними имеет место достаточно удовлетворительное соответствие. Аналогичный подход использован и при вычислении кинетики односторонне накопленной  [c.67]

В условиях повышенных температур фактор наличия выдержки на экстремумах нагрузки оказывает свое влияние на параметры процесса деформирования, причем его степень зависит от типа материала, уровня температур, длительности выдержек и уровня приложенных напряжений. На рис. 4.8 показаны экспериментальные данные по кинетике циклической 6 ) и односторонне накопленной пластических деформаций для стали Х18Н10Т при 450° С и различных формах цикла мягкого режима нагружения, включая простое нагружение треугольной формой цикла и трапецеидальной с выдержками как в полуциклах растяжения и сжатия, так и с односторонними выдержками в каждом из этих полуциклов, причем время выдержки во всех случаях 5 мин.  [c.74]

Другим важным обстоятельством является то, что во многих практических случаях в конструкциях за пределом упругости оказываются только зоны концентрации напряжений, в то время как основной материал нагружается упруго. В силу кинематической связанности с основным материалом, материал в зонах концентрации работает в условиях, близких к жесткому режиму нагружения, т. е. без значительного накопления односторонних деформаций. При этом величина деформаций, определяющая малоцикловую прочность конструкции (как это показано в гл. 1), оказывается не такой чувствительной к характеристикам сопротивления деформированию, как это имеет место для гладкого образца при заданной нагрузке. Например, при всестороннем растяжении полосы с отверстием ( о = 2) при номинальных напряжениях Он == 0,8 От эквидистантное смещение пластического участка диаграммы деформирования вниз на 40% по напряжениям вызывает увеличение деформаций всего на 30%. Указанные обстоятельства следует учитывать при формулировке уравнений состояния, имея в виду их практическое использование при расчете малоцик.ловой прочности.  [c.128]

При рассмотрении циклических гистерезисных кривых выделяются две стадии процесса циклического пластического деформирования [8, 13] переходная стадия, в течение которой происходит изменение реакции материала (для каждого цикла проходится новая кривая гистерезиса), и установившийся режим (предельная гистерезисная петля вновь проходится на каждом цикле, так как изменения петли отсутствуют или столь малы, что их можно измерить только после большого числа циклов). Установившийся режим может достигаться асимптотически либо вообш,е не достигаться. Материалы по характеру их поведения при циклическом нагружении можно разделить на циклически упрочняющиеся, циклически разупрочняющиеся и стабильные. Один и тот же материал в зависимости от режима и характеристик циклического нагружения может проявлять свойства циклической упрочняемости, разупрочняемости, стабильности.  [c.132]



Смотреть страницы где упоминается термин Деформирование материала пластическое режимов : [c.231]    [c.36]    [c.68]    [c.130]    [c.110]    [c.36]    [c.262]    [c.184]    [c.11]    [c.95]    [c.196]    [c.98]    [c.93]   
Восстановление деталей машин (2003) -- [ c.395 ]



ПОИСК



Деформирование материала пластическое

Деформирование пластическое

Материал Режимы

Материал пластический

Материалы - Деформирование



© 2025 Mash-xxl.info Реклама на сайте