Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые характеристики двигателей

Некоторые характеристики двигателей  [c.227]

Рассмотрим механические характеристики некоторых машин-двигателей и рабочих машин.  [c.115]

Колебания скорости звена приведения при работе машинного агрегата приводят к изменению момента движущей силы Мд, так как для большинства двигателей Мд является функцией ш (см. гл. 22). У ряда двигателей — синхронных электродвигателей, гидродвигателей и др. (см. гл. 20), имеющих жесткую характеристику, эти колебания незначительны. Но для некоторых (асинхронных, постоянного тока с параллельным возбуждением и др.) они существенны. Поэтому для более точного определения момента инерции маховика следует учитывать характеристику двигателя. Если участок  [c.345]


Система должна обеспечить высокую топливную экономичность и максимальные значения моментов на турбине гидротрансформатора. Рассмотрим влияние коэффициента прозрачности характеристики гидротрансформатора П и крутизны характеристики двигателя tg ф. С некоторым приближением крутизна характеристик двигателя может быть определена углом наклона секущей ЕД (рис. 99, в) к оси абсцисс или, что то же, к линии СЕ, где точки Е и Д соответствуют крайним режимам работы двигателя совместно с гидротрансформатором.  [c.209]

Участок характеристики от й = йк до й = йс (или от s = О до S = Sk) называют устойчивым, так как при увеличении момента внешних сил, приложенных к валу двигателя, скорость его падает и вместе с тем в соответствии с характеристикой на этом участке растет движущий момент Л д, обеспечивая новое установившееся значение скорости й. Участок характеристики от й = 0 до й = йк (или ot,s = Sk до s = oo) называют неустойчивым, так как при увеличении момента внешних сил и соответствующем уменьшении скорости й движущий момент также уменьшается и через некоторое время двигатель останавливается.  [c.291]

Условия прохождения через резонанс. Уравнение (15.49) может иметь один или несколько корней, определяющих значение угловой скорости двигателя в стационарном режиме. На рис. 86 изображен график величины 5(со) по формуле (15.50) для некоторой комбинации постоянных параметров механизма Р, /И], т, и г2. Искомые корни уравнения (15.49) найдутся в пересечении графика 5(ш) с характеристикой двигателя  [c.296]

При некоторых частных предположениях о характеристиках двигателя Afj и рабочей машины и законе изменения передаточного отношения в работах [95—103] были поставлены и решены различные задачи динамического анализа и синтеза механических систем с вариаторами. В общем же нелинейном случае уравнения движения (8.1) и (8.2) не интегрируются в квадратурах и решение подобных задач сопряжено с большими трудностями. В этой связи приходится прибегать к численным, графическим, графоаналитическим или иным качественным методам исследования.  [c.268]

Отметим некоторые характерные особенности, связанные с использованием в расчете статической характеристики двигателя.  [c.290]

Некоторые усложнения, связанные с использованием в расчете динамической характеристики двигателя оправданы получаемыми уточнениями. Характеристическое уравнение третьего порядка системы уравнений движения можно с достаточной точностью решить следующим образом [73].  [c.292]

Процессы преобразования энергии в двигателях разделяются на статические и динамические. Статическим называется такой режим работы двигателя, при котором входные параметры, обобщенная движущая сила и обобщенная скорость выходного звена остаются постоянными в течение некоторого, сравнительно большого интервала времени. Характеристика двигателя (1.1), соответствующая такому режиму работы, называется статической или рабочей-, она выражает зависимость между обобщенной скоростью и обобщенной силой при фиксированном значении вектора и  [c.17]


Двигатели, в которые входят перечисленные детали, в зависимости от их назначения имеют различные габариты, частоту вращения коленчатого вала, крутящие моменты, степень сжатия. Разнообразие характеристик двигателей приводит к тому, что требования к деталям одного функционального назначения меняются в широких пределах. На рис. 1—7 приведены комплексные и рабочие чертежи некоторых деталей этой группы. В комплексных чертежах отражены характерные конструктивные особенности большинства деталей, относящихся к группе деталей одного функционального назначения. В рабочих чертежах указаны размеры и технические требования, относящиеся к конкретным деталям.  [c.241]

К о м а р о в М. С. Исследование динамики приводных упругих систем с учетом действительных характеристик двигателей. Сб. Некоторые вопросы динамики машин . Изд. Львовского Госуниверситета, 1956.  [c.234]

Ог). определяет точкой пересечения характеристики двигателя с моментом Ма скорость 0)2 для заданных аначений частоты (Bj и регулировочного параметра г. Устойчивость движения системы, возбуждаемой рассматриваемыми агрегатами, таким образом, определяется только в отношении скорости 0)2. т. е. в ней возможны лишь амплитудные срывы. Автономное задание частоты скоростью 0i привода распределителя исключает частотные срывы в системе, если между приводами не существует дополнительных связей. В роторных гидропульсаторах некоторых модификаций такая связь существует. Например, для агрегата по схеме, показанной на рис. 8, связь между приводами осуществляется в в виде момента (o)i, о) ) трения между золотником и ротором. В этой системе возможны как амплитудные, так и частотные срывы, поскольку режимы движения определяются уже двумя уравнениями баланса нагрузок, взаимосвязанными моментом трения  [c.187]

Механические характеристики двигателей постоянного тока, питаемых по системе Леонарда. В системе Леонарда двигатель постоянного тока питается от отдельного генератора, напряжение которого можно менять, регулируя его ток возбуждения по величине в самых широких пределах от нуля до некоторого максимума. Переменой же направления тока возбуждения можно изменять полярность. Двигатель пускается не при помощи реостата, а изменением величины напряжения генератора (фиг. 17). Скорость двигателя при номинальном магнитном потоке генератора и максимальном магнитном потоке двигателя называется основной. Ниже основной скорость двигателя регулируется током возбуждения генератора повышение скорости выше основной достигается уменьшением тока возбуждения двигателя. Во всех случаях число оборотов двигателя в минуту подчиняется зависимости  [c.12]

Гидромуфта с предкамерой без дополнительного объема подбирается к двигателю так, чтобы при ее оптимальном заполнении характеристика насоса пересекала устойчивую часть характеристики двигателя вблизи точки К. Для привода некоторых машин (например, конусных дробилок), для которых существенное значение имеет величина пускового момента привода под нагрузкой, желательно применять специальные короткозамкнутые электродвигатели с большой перегрузочной способностью.  [c.245]

OM, затрачивается на разгон жидкости в круге циркуляции. Второй причиной различия статических и динамических характеристик привода может явиться податливость характеристик двигателя, благодаря которой обороты турбины устанавливаются лишь спустя некоторое время, потребное для установления оборотов двигателя. Оба фактора — и инерция потока жидкости в гидромуфте и податливость характеристик двигателя — приводят к зависимости от времени величины момента, передаваемого гидромуфтой.  [c.263]

Многие конструкции автоматических регуляторов снабжаются устройствами, обеспечивающими возможность дистанционного управления. Все больше проявляется тенденция сосредоточения в автоматическом регуляторе двигателя по возможности большего количества различных автоматических приборов. Так, например, некоторые автоматические регуляторы, кроме поддержания заданного скоростного режима, имеют устройства по ограничению нагрузки, корректированию внешней характеристики двигателя, контролю давления в системе смазки, изменению угла опережения впрыска при изменении числа оборотов и по некоторым другим параметрам. Процесс сосредоточения автоматических приборов в одном агрегате будет, по-видимому, продолжаться и впредь. В предстоящие годы значительно возрастет степень автоматизации всех выпускаемых в Советском Союзе двигателей.  [c.26]


При работе дизеля на гребной винт его характеристики (см. фиг. 73 и 74) указывают на то, что номинальный скоростной режим может быть превзойден почти при всех положениях органа управления, а при некотором числе оборотов, превышающем номинальное, характеристики двигателя пересекают характеристику предела дымности (кривая J на.фиг. 74). Кроме того, инерционные силы в механизме двигателя могут значительно увеличиваться, а пересечение границы дымности повлечет за собой догорание топлива в процессе  [c.95]

Охлаждение высокотемпературных турбин авиационных двигателей затрагивает широкий круг вопросов, связанных не только с разработкой системы подвода воздуха, конструкции и производства охлаждаемых лопаток, но и с необходимостью учета влияния системы охлаждения на характеристики двигателя. Отбор некоторого количества воздуха на охлаждение турбины уменьшает удельную тягу и увеличивает удельный расход топлива двигателя, вследствие чего необходимо использовать все возможности для уменьшения расхода охлаждающего воздуха. Кроме того, существенное влияние на термодинамические параметры рабочего процесса оказывает выпуск охлаждающего воздуха в проточную часть турбины.  [c.59]

Как уже было отмечено во вступлении к данной главе, в подавляющей части публикаций, посвященных двигателям Стирлинга, влияние параметров на рабочие характеристики рассматривается безотносительно к их значимости для проектирования и изготовления двигателей. Причина этого состоит в том, что во многих таких публикациях описываются опытные двигательные установки и их потенциальные возможности. Более того, часть подобных публикаций, по существу, мало отличается от рекламных проспектов. Однако и в таком подходе есть резон, поскольку он привлекает внимание к описываемому двигателю. Следует также принять во внимание, что до недавнего времени только отдельные исследователи имели доступ к экспериментальным данным и могли использовать накопленный опыт эксплуатации, а это совершенно необходимо для понимания влияния изменения рабочих параметров на конструкцию и эксплуатационные характеристики двигателя. В настоящее время положение значительно улучшилось. Поэтому при рассмотрении рабочих характеристик мы по возможности будем прослеживать взаимосвязь этих характеристик с физическими процессами. В некоторых случаях, чтобы обеспечить требуемые рабочие характеристики, в двигателях Стирлинга используют конструктивные компоненты, присущие только этим двигателям или по крайней мере удовлетворяющие требованиям, предъявляемым замкнутым рабочим циклом. Такие компоненты необходимо анализировать более детально, и это сделано в следующей главе.  [c.80]

Выше были рассмотрены в отдельности влияния, которые оказывают различные конструкционные и рабочие параметры на рабочие характеристики двигателя Стирлинга. На практике некоторые или даже все эти параметры могут изменяться при работе двигателя, однако влияние изменяющихся параметров  [c.101]

Основополагающие теоретические концепции регулирования мощности были рассмотрены в гл. 1. Полное математическое описание различных систем регулирования мощности позволяет применить соответствующую микропроцессорную технологию для создания наиболее эффективной системы регулирования. Насколько нам известно, пока не опубликовано каких-либо работ, посвященных этому вопросу, хотя вряд ли основные фирмы, занимающиеся разработкой двигателя Стирлинга, не обращались к данной проблеме. Результаты анализа термодинамических и газодинамических характеристик двигателя Стирлинга позволяют определить некоторые параметры, необходимые для системы регулирования, например среднее давление, мертвый  [c.267]

Отклонение от идеализированного движения оказывает совершенно определенное, выражаемое количественно влияние на характеристики двигателя Стирлинга (рис. 2.16). Однако при конструировании приводных механизмов этот фактор не всегда учитывается значительно большее внимание уделяется простоте изготовления, балансировке, надежности, влиянию трения и т. п. Выбор механизма привода с учетом указанного фактора требует, конечно, наибольших затрат, но возможность увеличить выходную мощность двигателя, правильно сконструировав привод, может заслуживать серьезного внимания в некоторых практических приложениях. Этот вопрос обсуждался в работе Ридера и др. [58].  [c.284]

Имеются другие рабочие параметры, которые нельзя сравнить с критериями работы, и наоборот. Первые, видимо, имеют более важное значение, поскольку они дают некоторое представление о совершенстве конструкции и позволяют сравнить характеристики рассматриваемого двигателя с характеристиками двигателей других типов. Основные параметры, приведенные в табл. 2.5 и 2.6, также помогают провести такое сравнение.  [c.297]

Помимо воздействий со стороны соседних элементов, некоторые элементы двигателя подвергаются воздействию внешних факторов и управляющих команд. Влияние внешних воздействий обычно проявляется в разбросах плотностей, компонентов в баках, давлений окислителя и горючего на входе в насосы, в колебаниях давления окружающей среды и т. д., а также в разбросах геометрических размеров конструкций и гидравлических характеристик дросселей, магистралей и газовых трактов.  [c.21]

Генераторы постоянного тока с приводом в виде двигателя внутреннего сгорания используются главным образом при постановке временных (опытных) катодных станций. Некоторые характеристики генераторов постоянного тока приведены в табл. 65.  [c.182]

Обзор состояния разработок по проекту фирмы Аэроджет-Дженерал в области искусственного сердца приведен в работе Мойса и Фэзера [236]. В системе, разработанной фирмой Аэроджет—Дженерал , привод циркуляционного насоса крови — пневматический, для получения мощности которого используется ядерный источник энергии и регенеративный двигатель, работающий в режиме генератора давления. Некоторые характеристики двигателя приведены в табл. 15.2.  [c.326]


Конечно, во многих случаях вибрационные машины явля ются более сложными, чем показано в этом параграфе упругая сила подвески и демпфирующая сила — нелинейные, скорость вращения дебалансов не принимается постоянной, а учитывается характеристика двигателя, и подвеска часто обеспечивает движение массы не только прямолинейное, но и плоское или пространственное в некоторых случаях приходится учитывать присоединяемую к М массу обрабатываемого продукта.  [c.303]

Характеристики двигателей (1.1) и уравнения (1.10) (или (1.11)) в совокупности составляют уравнения движения неуправляемой машины. Задача динамического анализа неуправляемой машины может быть сформулирована следующим образом. Пусть йаданы законы изменения параметров Us(f), s = l,. .., I] требуется определить законы изменения некоторых выходных координат Xiit),. .., Решение этой задачи сводится к интегрированию 21 + п уравнений (1.1) и (1.10), содержащих 21 + п неизвестных (iji,. .., qi, 01,. .., 0 , Qi,. .., Qt) при этом должны быть заданы в достаточном количестве начальные условия или оговорены другие граничные условия, обеспечивающие единственность решения. В частности, при Us = onst может ставиться задача об определении установившегося движения машины.  [c.13]

Установившееся движение однодвнгательной машины с передаточным механизмом, образующим многомассовую ценную колебательную систему. Для машины с жесткими звеньями нам удалось, используя метод возмущений, свести задачу исследова-1ШЯ установившегося движения к задаче о вынуждеппых колебаниях некоторой линеаризованной системы. Аналогичный подход возможен и при анализе установившегося движения машины с упругими звеньями в передаточном механизме, механическая часть которой представлена на рис. 19. Дополняя уравнения движения (3.40) (для общности число масс в дальнейшем предполагается равным га + 1) характеристикой двигателя (4.42), получим полную систему уравнений движения неуправляемой махпины. Предполагая, что установившееся движение выходного звена двигателя будет мало отличаться от режима равномерного вращения,  [c.86]

Динамическую характеристику двигателя примем в форме (2.13). Как было показано выше, эта линеарпзовапная характеристика достаточно хорошо описывает процессы, протекающие в двигателях при установившихся движениях, а для двигателей некоторых классов и в переходных режимах. Учитывая зависимость момента Мдо и угловой скорости Оо от входного параметра и (который здесь будет приниматься скалярным параметром), запишем характеристику двигателя в форме  [c.127]

Например, при определении неравномерности вращения ведущих звеньев можно воспользоваться динамической моделью машинного агрегдта (рис. 18), представленной в виде совокупности элемента Д, отображающего динамическую характеристику двигателя и приведенного момента инерции машины. При рассмотрении этого вопроса обычно могут быть либо совсем исключены из рассмотрения упругодиссипативные свойства звеньев механизмов, либо учтены наиболее податливые элементы привода, например ременные передачи, длинные трансмиссии и т. п. (рис. 18, б). Результаты анализа такой модели дают возможность выявить координату Фо (t), определяющую в первом приближении движение ведущего звена механизма. Заметим, что нередко при малом коэффициенте неравномерности можно даже принять Фо (Од , где о — угловая скорость. При таком подходе из общей системы машинного агрегата могут быть выделены некоторые типовые динамические модели цикловых механизмов, приведенные в табл. 6. При построении этих моделей помимо опыта  [c.48]

МОТКИ ротора активного и реактивного сопро-тивлений. Наиболее резко это сказывается в двигателях с глубокой впадиной и в двигателях Бушеро. На фиг. 27 а — типичная характеристика момента обыкновенного короткозамкнутого двигателя, б—двигателя Бушеро, в—двигателя с глубоким пазом. Возможен ряд других аналогичных вариантов характеристик. Для целей привода эти характеристики, как и характеристики сериесных двигателей постоянного тока, следует давать графически. На фиг. 28 приведены типичные характеристики двигателей, используемых в некоторых металлорежущих станках в США.  [c.16]

Особенностью режимов нагружения деталей авиационных ГТД является высокая температура основных деталей — рабочих и сопловых лопаток турбины, дисков, элементов проточной части газового тракта. По данным зарубежных исследователей [7, 8 и др.], температура газа перед турбиной в транспортных ГТД за последние 10—15 лет выросла на 300° С и достигает 1300° С и более, что вызвано требованиями снижения удельного веса двигателей и повышения их мощности и экономичности. Эти требования в наибольшей степени относятся к авиационным двигателям, в особенности из-за общей тенденции экономии топлива. По данным работы [7], в которой приведен обзор направлений развития зарубежных ГТД, рост температуры газа перед турбиной будет продолжаться, к 1985—1990 гг. может быть достигнут уровень 1700° С. Охлаждаемые конструкции лопаток допускают эту возможность, если учесть, что жаропрочность обычных литых материалов увеличивается в среднем на 10° в год кроме того, разрабатываются новые высокожапропрочные сплавы — композиционные, эвтектические и др. [9]. Следовательно, теплонапря-женность деталей авиационных двигателей будет увеличиваться. Высокий уровень температур объясняет и следующую особенность этих конструкций — применение высокожаропрочных сплавов, которые часто не имеют большого ресурса пластичности, свойственного ряду конструкционных материалов, используемых в тех же деталях 10—15 лет назад. В табл. 4.1 приведены для сравнения некоторые характеристики жаропрочных лопаточных сплавов, расположенных в хронологическом порядке их применения в промышленности. Каждый из четырех приведенных материалов является базовым для ряда других, созданных на его основе, и представляет, таким образом, группу сплавов.  [c.77]

Критерии оптимальности характеризуют динамический режим всей системы двигатель — передаточный механизм — производственная машина. Отметим, что в рамках обратной задачи уместна более широкая постановка проблемы динамического синтеза системы, т. е. решение задачи оптимизации не только при помощи рационального выбора закона движения механизма, но и путем выбора других параметров системы (характеристика двигателя, передаточные числа, моменты инерции ичпр.). При решении задач динамического синтеза представляет интерес как минимизация некоторого обобщенного интегрального критерия, так и оценка других экстремальных и средних критериев, которые могут определяться условиями эксплуатации и технологическими соображениями. Часто представляет интерес оценка максимальной неравномерности движения ведущего или ведомого звена, величины максимальных ускорений отдельных звеньев и пр.  [c.84]

Наконец, когда характеристики двигателя и потребителя совпадают всеми своими точками в некотором диапазоне чисел оборотов (фиг. 79), то двигатель в этом случае обладает нулевым самовы-равниванием.  [c.89]


Отработавшие газы подаются обратно в систему сгорания на входе в нагнетатель воздуха. Сравнительно высокая температура отработавших газов снижает потенциальную долговечность нагнетателя, однако одновременно снижает и тепловую нагрузку предварительного подогревателя воздуха. В процессе работы соотношение воздуха и топлива в рабочей смеси и температура в трубках нагревателя регулируются в зависимости от изменений нагрузки, чтобы сохранить постоянство температуры и пониженное содержание топлива в рабочей смеси (бедную смесь). Если рециркулирует постоянная доля отработавших газов, то при некоторых значениях нагрузки это будет ухудшать рабочие характеристики двигателя. В одном случае конечная температура смеси будет слишком низкой и процесс горения будет нестабильным, в то время как, например, при полной нагрузке отработавшие газы не будут охлаждаться в нулгной степени. Следовательно, поток рециркулирующего газа необходимо регулировать в соответствии с условиями нагрузки и температурой рабочей смеси. Процентное содержание отработавших газов в системе рециркуляции обычно колеблется от 74, до 140% и в среднем составляет 90При этом процентное содержание рециркулирующего газа определяется по формуле [92]  [c.179]

В гл. I более или менее подробно рассматривалось по отдельности влияние различных конструктивных и рабочих параметров на характеристики двигателя Стирлинга. На практике можно при работе изменять в некоторых пределах давление, температуру, скорость вращения вала и иногда мертвый объем. Поскольку изменение одного определяющего параметра может привести к изменению нескольких или всех остальных определяющих параметров, для полного описания общих рабочих характеристик двигателя Стирлинга необходимо учесть все эти эффекты, что молено сделать графически с помощью рабочих диаграмм двигателя, как показано на рис. 1.89. Такие диаграммы содержат большое число данных, так что весьма нелегко выделить влияние различных параметров или определить конкретные закономерности, которые могли бы помочь конструктору или потребителю быстро оценить технические характеристики конкретного двигателя или возможность его использования. Следовательно, в подобных обстоятельствах обращение к многочисленным рабочим диаграммам не всегда облегчает выбор двигателя и, разумеется, не позволяет определить влияние его размеров. Кроме того, нет возможности использовать программы численного расчета, поскольку для их применения требуется слишком много подробных входных данных. Можно использовать результаты расчета идеальных термодинамических циклов типа описанных в первой части гл. 2, но, поскольку они не учитывают практических особенностей работы машины, сомнительно, чтобы такие результаты привели к правильным выводам, если только исследователь не имеет достаточно большого опыта, чтобы разумно интерпретировать их, а это можно сделать лишь в том случае, если известны необходимые коэффициенты незнания . Однако в некоторых случаях могут быть полезны результаты анализа псевдоцикла.  [c.305]

Дальнейшему развитию теории поршневых двигателей посвящены помещенные в настоящем издании работы О тепловом расчете двигателя ( Техника воздушного флота , 1927, № 2) и Идеальный цикл быстрого сгорания (литогр. издание ВВА им. И. Е. Жуковского, 1927). В первой из работ на основании оригинального расчета цикла, базирующегося на составлении замкнутого теплового баланса, впервые теоретически обосновывается положение о том, что индикаторный к. п. д. правильно отрегулированного двигателя практически не зависит от коэффициента наполнения и внешнего давления и в основном определяется степенью сжатия и коэффициентом потерянного тепла. Некоторые из этих вопросов более подробно анализируются в работе Идеальный цикл быстрого сгорания . Работа посвящена расчету индикаторного к. п. д. цикла с учетом зависимости теплоемкости рабочего тела от температуры, влияния остаточных газов и теплообмена со стенками. Обе работы имели большое практическое значение не только как теоретические основы построения характеристик двигателей, но и при определении возможных путей повышения эффективности поршневых двигателей.  [c.310]

Анализ влияния основных параметров двигателей на экономические характеристики его работы показывает, что, при условии бездетонационной работы, для каждой группы двигателей существует рациональный предел повышения степени сжатия и обеднения смеси. С учетом экономичности и весовых характеристик двигателей наивыгоднейшие значения степени сжатия приближаются к е =8 9 при обеднении смеси до значения а = 1,2-ь1,4. Известно, что не представляется возможным обеспечить устойчивую работу двигателя с обычным искровым зажиганием на смесях с а=1,2-5-1,4 при степени сжатия е = 8-ь9. Что касается двигателя с воспламенением от сжатия (дизеля), то степень сжатия е = 8-ь9 недостаточна для обеспечения надежного самовоспламенения, а смесь с а=1,2-ь1,4 оказывается для него богатой. При таком коэффициенте избытка воздуха трудно получить полное сгорание топлива. Для осуществления рабочего процесса двигателя с наивыгоднейшими параметрами (г =8- 9 и а= 1,2- 1,4) можно применить факельную систему зажигания, называемую также форкамерной или предкамерной. Кроме получения высокой экономичности, факельная система зажигания, благодаря присущему ей антидетонацион-ному эффекту, позволяет значительно расширить ассортимент применяемых топлив в результате использования некоторых низкосортных продуктов.  [c.308]


Смотреть страницы где упоминается термин Некоторые характеристики двигателей : [c.144]    [c.205]    [c.296]    [c.53]    [c.6]    [c.85]    [c.263]    [c.76]    [c.88]    [c.221]   
Смотреть главы в:

Двигатели Стирлинга  -> Некоторые характеристики двигателей



ПОИСК



Характеристика двигателя



© 2025 Mash-xxl.info Реклама на сайте