Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поток Течение турбулентное — Теплоотдач

При кольцевом течении смеси тепловой ноток не является таким решаюш им фактором, как в условиях расслоенного течения. Однако подводимое к потоку тепло вызывает изменение объемного соотношения фаз в смеси я способствует развитию турбулентности в потоке. Поэтому чем больший тепловой поток подводится к двухфазному потоку, тем выше коэффициент теплоотдачи. Это учитывается членом в уравнении (8). Интенсивность турбулентности, вызываемая тепловым потоком, более точно описывается числом характеризуюш им кипение жидкости  [c.267]


На фиг. 57 приведена экспериментальная зависимость коэффициента теплоотдачи от температуры потока при турбулентном течении воды в трубе. Как видно, в области околокритических  [c.208]

Рассмотрим влияние основных режимных параметров — давления, массовой скорости и пар о содержания для указанных выше видов кризиса теплоотдачи. С изменением давления меняется плотность фаз, сила поверхностного натяжения, вязкость и т. д., что сказывается на параметрах парообразования и толщине граничного кипящего слоя. Различная скорость потока обусловливает разный градиент скорости в слое. Это оказывает влияние на размеры отрывающихся пузырьков пара и интенсивность эвакуации их в ядро течения. Турбулентные пульсации, также зависящие от средней скорости течения, определяют интенсивность диффузии капель из ядра и срыва жидкости с пленки. С изменением энтальпии потока меняется скорость, влагосодержание и интенсивность обмена жидкостью между ядром потока и пристенным слоем. "  [c.120]

Интересно проследить за характером течения жидкости в пленке. При малых тепловых потоках, т. е. при малых количествах конденсата, толщина пленки незначительна и течение в ней носит ламинарный, упорядоченный характер (рис. 8,а). Но вот тепловой поток по тем или иным причинам возрос, пленка стала полноводнее , толщина ее возросла, а течение приобрело волнообразный характер (рис. 8,6). Наконец, при еще больших потоках течение теряет признаки упорядоченности — наступает турбулентный режим течения с интенсивным перемешиванием (рис. 8,в). Последнее обстоятельство существенно улучшает эффективность теплоотдачи по сравнению с ламинарным режимом.  [c.19]

Из (12) и (18) видно, что фононное контактное теплосопротивление определяется соотношением между плотностями и скоростями звука в рассматриваемых средах. В приведенных расчетах нигде не фигурирует скорость потока жидкого металла и параметры, характеризующие режим его течения. Известно, что теплоотдача при вынужденной конвекции жидкости может быть выражена соотношением между безразмерными критериями Нуссельта, Рейнольдса и Прандтля, т. е. интенсивность теплообмена будет определяться и скоростью потока жидкости. Однако специфика жидких металлов заключается в том, что они имеют очень низков значение числа Прандтля по сравнению со всеми другими жидкостями [9]. Поэтому для них передача тепла турбулентной конвекцией отступает на второй план по сравнению с чрезвычайно высоким коэффициентом теплопроводности. А так как основное термическое сопротивление находится при этом в узком пристеночном слое, в котором тепло переносится к жидкому металлу или от него за счет обычной теплопроводности, то тем самым правомерность предпринятого рассмотрения жидкого металла как неподвижного при расчете контактного теплосопротивления получает достаточное обоснование. При решении же гидродинамической задачи о нахождении коэффициента теплообмена между жидким металлом и твердой стенкой учет режима течения обязателен.  [c.13]


При турбулентном течении жидкость в потоке весьма интенсивно перемешивается и естественная конвекция почти не оказывает влияния на теплоотдачу. Температура жидкости по сечению ядра практически постоянна. Большое изменение температуры наблюдается только в пограничном слое. При нагревании жидкости интенсивность теплоотдачи выше, чем при охлаждении. Эта зависимость хорошо учитывается отношением  [c.430]

При движении жидкости относительно сферы локальный коэффициент теплоотдачи зависит от местных профилей скорости и температуры, а также отрыва потока. Все переменные, характеризующие поле течения, такие, как турбулентность, разреженность, переменные свойства жидкости и излучение, оказывают влияние также и на теплообмен. Суммарный тепловой поток зависит от поля течения, а также положения и существования областей отрыва [369, 528].  [c.37]

Уравнение энергии для двухфазного потока можно получить таким же образом, как это делается для однофазного турбулентного потока. Рассмотрим теплоотдачу к стационарному двухфазному потоку в круглой трубе, стенка которой на участке а > 0 поддерживается при постоянной температуре. Уравнение энергии рассматриваемого течения получается из баланса энергии для малого элемента объема. С учетом того, что у = и = 0, а из членов, характеризующих турбулентный теплообмен, (ю Т ) — 0 и (и Т ) не зависит от х, уравнение энергии в цилиндрических координатах принимает вид  [c.171]

В настоящее время разработаны и успешно применяются численные методы-решения многих теплофизических задач расчет температурного состояния-твердых тел, температурных полей в потоках жидкости и газа, в жидких и газовых прослойках, заключенных в неподвижные или вращающиеся полости исследование закономерностей движения теплоносителя с целью выявления механизма процессов теплообмена исследование структуры пограничного слоя, теплообмена и трения на твердой поверхности и т. п. Одним из наиболее успешно развивающихся направлений использования математического эксперимента в теплофизических исследованиях является изучение закономерностей тепломассообмена и трения в потоках жидкости и газа с использованием теории пограничного слоя. Поэтому в качестве примера рассмотрим более подробно основные этапы математического эксперимента по исследованию сопротивления трения и теплоотдачи турбулентного потока к твердой поверхности. Ограничим задачу случаем стационарного течения несжимаемой жидкости с постоянными теплофизическими свойствами около гладкой плоской поверхности (в общем случае проницаемой).  [c.66]

Теплоотдача. Выясним, можно ли применять гидродинамическую теорию теплообмена (см. гл. 24) для исследования теплоотдачи при турбулентном течении в трубе. Исследования показали, что в потоках с высокой турбулентностью различия профилей ско-  [c.296]

Определить коэффициент теплоотдачи в выходном сечении сопла ракетного двигателя, находящемся на расстоянии 0,75 м от головки камеры сгорания. Расход продуктов сгорания в двигателе 14 кг/с. Температура стенки сопла 800° С статическая температура потока 1497° С давление на срезе сопла 981 Па диаметр выходного сечения 0,25 м. Физические свойства газа взять из предыдущей задачи. Режим течения в пограничном слое считать турбулентным.  [c.256]

Рис. 1.20. Теплоотдача при турбулентном течении в трубе в условиях постоянной плотности теплового потока на стенке Рис. 1.20. Теплоотдача при <a href="/info/2643">турбулентном течении</a> в трубе в условиях постоянной <a href="/info/29212">плотности теплового потока</a> на стенке

Содержание работы. Определение локальных значений коэффициентов теплоотдачи по длине пластины, обтекаемой потоком воздуха, при ламинарном и турбулентном режимах течения в пограничном слое. Обобщение результатов опыта в критериальном виде и сравнение полученных зависимостей с имеющимися в литературе экспериментальными данными. Определение профилей скорости и температуры в пограничном слое.  [c.153]

Коэффициент теплоотдачи а определяют три группы факторов. Во-первых, геометрические факторы, связанные с конфигурацией системы конвективного теплообмена течение жидкости вдоль плоской поверхности, поток в трубе (или в продольных межтрубных каналах), поперечное обтекание труб и трубных пучков и т. д. Во-вторых, гидродинамические факторы, обусловленные прежде всего наличием двух режимов течения — ламинарного (при малых значениях числа Не) и турбулентного (при больших значениях числа Ке). Механизм теплообмена в двух этих случаях существенно различен. Кроме того, в пределах каждого режима течения имеется связь коэффициента теплоотдачи а со скоростью потока, качественно одинаковая для обоих режимов — при возрастании скорости потока коэффициент а увеличивается. Однако количественные характеристики для ламинарного и турбулентного режимов различны.  [c.315]

В турбулентном потоке скорость резко изменяется в пределах вязкого подслоя (см. 52) и профиль скорости является более заполненным по сравнению с параболой Пуазейля для турбулентного течения в трубе средняя скорость Шо = 0,8шт, а для параболы Пуазейля Wo— = 0,5wm (см. также рнс. 14.9 и 15.2). На этом факте основано применение формул, используемых для коэффициента трения и теплоотдачи, для труб некруглого поперечного сечения, при этом вводят эквивалентный диаметр, определяемый формулой  [c.388]

Теплоотдача при вынужденном движении жидкости вдоль плоской поверхности. При движении жидкости вдоль плоской поверхности профиль распределения продольной скорости поперек потока изменяется по мере удаления от передней кромки пластины. Если скорость в ядре потока и о, то основное изменение ее происходит в пограничном слое толщиной б, где скорость уменьщается от vvo до и,. = О на поверхности пластины. Течение в пограничном слое может быть как ламинарным, так и турбулентным. Режим течения определяется критическим значением критерия Рейнольдса, нижний предел которого для ламинарного пограничного слоя равен Re p = 8 Ю , а при Re > 3 10 вдоль пластины устанавливается устойчивый турбулентный режим течения. При значениях 8 10 < Re < 3 10 режим течения — переходный (рис. 2.30).  [c.170]

В теплогенераторах, работающих на высокотемпературных теплоносителях, циркуляция теплоносителя принудительная, а температура нагрева ниже температуры насыщения при данном давлении. Теплоносители в процессе эксплуатации подвергаются термическому разложению, которое происходит на границе теплоносителя с греющей стенкой, т. е. в пограничном слое. По этой причине у термостойких ВОТ (ДФС, ДТМ и КТ-2) на греющей стенке образуется кокс, у термически малостойких (масла АМТ-200 и ИС-40А) образуются пузырьки газообразных продуктов разложения, которые с увеличением плотности теплового потока сливаются между собой, образуя сплошную пленку. Образование на поверхности нагрева кокса или газовой пленки резко ухудшает теплообмен между ВОТ и поверхностью нагрева. Во избежание этого для всех ВОТ при турбулентном течении их в трубах максимальная температура стенки не может превышать более чем на 20 °С предельную температуру применения данного теплоносителя, так как при температуре на 30...40°С выше наступает период интенсивного разложения теплоносителя с образованием на греющей поверхности слоя кокса либо газовой пленки. В современных теплогенераторах ВОТ, радиационная поверхность нагрева которых выполнена в виде змеевика с плотной навивкой, теплопередача осуществляется через поверхность, обращенную внутрь, к вертикальной оси змеевика. Во всех гидродинамических режимах течения ВОТ наименьшие значения коэффициента теплоотдачи наблюдаются на поверхности, обращенной внутрь змеевика, а следовательно, эта область является наиболее теплонапряженной. В связи с этим предельную плотность теплового потока для теплогенератора ВОТ змеевикового типа подсчитываю по формуле  [c.292]

Положение точки отрыва вихрей от цилиндра не является стабильным. При большой степени турбулизации потока, характеризуемой числом Re>2 10 , течение не только в канале, где установлена труба, но и в пограничном слое переходит в турбулентное. Отрыв турбулентного пограничного слоя от цилиндра происходит при ср = = 120... 140°. Последнее обстоятельство улучшает обтекание цилиндра вследствие уменьшения вихревой зоны и резко увеличивает теплоотдачу.  [c.345]

На интенсивность теплоотдачи кроме критериев Яе и Рг существенное влияние оказывает начальная турбулентность набегающего потока. Так, повышение среднего квадратичного значения осред-ненных во времени пульсационных составляющих скорости при турбулентном течении на 2,5 % приводит к увеличению числа Ми на 80%. Количественные данные об этом влиянии получены экспериментальным путем.  [c.107]

Таким образом, при возрастании плотности теплового потока коэффициент теплоотдачи в переходной зоне увеличивается не только за счет появления новых центров парообразования, но и вследствие интенсификации переноса теплоты у каждого центра. Аналогичная ситуация складывается в однофазном потоке в переходной области от ламинарного течения к турбулентному зависимость числа Nu от числа Re оказывается более значительной, чем при развитом турбулентном течении. Причина, по существу, та же — слабый механизм переноса, действующий в ламинарном потоке, с ростом числа Рейнольдса вытесняется более сильным механизмом турбулентного обмена,  [c.192]


На рис. 8.3 представлена зависимость коэффициента теплоотдачи от скорости циркуляции Wq при турбулентном течении воды без кипения (прямая 1) и в условиях кипения при различных значениях плотности теплового потока (кривые 2 к 3) [166]. При кипении 3 трубах также можно выделить три области режимных параметров, различающихся между собой по механизму переноса теплоты. При малых скоростях значение коэффициента теплоотдачи определяется процессом парообразования. При больших скоростях и том же значении q коэффициент теплоотдачи не зависит от плотности теплового потока. Между этими крайними областями режимных параметров располагается зона, в которой проявляются оба механизма переноса теплоты.  [c.227]

Если плотность частиц достаточно велика, так что условия во внешнем потоке не зависят от теплоотдачи от обогреваемой П.ЛОСКОЙ пластины, и диффузное излучение имеет место только в слое порядка толщины пограничного слоя, то выполняются условия Тро = То и /р =С7, и смесь при турбулентном режиме течения ведет себя как смесь газов (разд. 5.6).  [c.368]

Обобщение экспериментальных данных. Анализ работ [3.38—3.47], посвященных экспериментальному исследованию теплоотдачи при течении турбулентных химически реагирующих потоков в трубе, показывает, что в настоящее время существует большое количество критериальных зависимостей для расчета чиела Нуссельта, полученных путем простого анализа, влияющих на теплоотдачу, безразмерных комплексов (3.94) или построенных с привлечением теории пленочной модели. Однако все предложенные критериальные зависимости обобщают экспериментальные данные только в своей области парамет-  [c.105]

Таким образом, при ускорении потока интенсивность турбулентности повышается вблизи стенки, но снижается в ядре потока. При этом интенсивность турбулентности в ядре потока может быть меньше не только квазистационарного, но и своего исходного значения до ускорения потока. Возможна даже ламинаризация потока в ядре. При замедлении потока, наоборот, уменьшение интенсивности турбулентности у стенки сопровождается ее возрастанием в ядре потока. Как было показано в работе [24], при развитом турбулентном течении (Ее> (1,5. .. 2) Ю ) преобладающее влияние на теплообмен оказывает изменение интенсивности турбулентности вблизи стенки и поэтому ускорение потока ведет к увеличению теплоотдачи по сравнению с квазистационарной, а замедление — к уменьшению. При уменьшении чисел Рейнольдса (при Ее < < (1. .. 1,5) 10 ) и соответственно уменьшении интенсивности турбулентности потока преобладающим оказывается влияние ее изменения в ядре потока. Ускорение потока при этом может приводить к уменьшению теплоотдачи, а замедление, наоборот, к увеличению.  [c.37]

Исследование средней теплоотдачи при турбулентном режиме по методу постоянного теплового потока. Развитое турбулентное течение жидкости внутри труб п каналов устанавливается при R e > Схема рабочего участка для исследования теплоотдачи в указанных условиях приведена па рис. 3-14. Нагревание исследуемой жидкости осуществляется за счет 1цепос редсщешоро про-  [c.165]

Значительным может быть влияние переменной плотности теплоносителя на гидродинамику и теплоотдачу турбулентного потока. При слабом влиянии термогравитационных сил на вынужденное течение турбулентный поток называют вязкостно-инерционным, при заметном влиянии свобод-  [c.213]

Для турбулентного потока увеличению коэффициента конвективной теплоотдачи в 2 раза будет соответствовать повышение скорости в 2 =2,38 раза и согласно формуле сопротивления течению жидкости в гладких трубах (в условиях изотермического турбулентного потока) потребуется увеличить папор в 2,38 =4,55 раза.  [c.202]

Для другого крайнего случая течения среды в условиях свободной конвекции, если критерий Грасгофа по порядку превышает критическое число Сгкрит Ю , то во внешней зоне потока осуществляется турбулентное течение. Турбулентный поток существенно влияет на толщину пограничного слоя с ламинарным течением, и теплоотдача повышается. Для турбулентной свободной конвекции критерий теплоотдачи определяется формулой  [c.302]

Течение в лобовой части цилиндра, в том числе и в критической точке, может быть описано уравнениями ламинарного пограничного слоя, а пара-1летры на внешней границе определяются на основании анализа потенциального потока (по уравнению Эйлера) [1, 2]. В работе [3] для расчета теплопередачи и касательных напряжений в лобовой критической точке рассмотрено влияние на ламинарный пограничный слой вихревой ячеистой структуры, состоящей из парных вихрей с осями, параллельными образующим цилиндра, с вращающейся каждой парой вихрей в противоположных направлениях. В [3, 4] влияние турбулентности на теплоотдачу рассчитывалось на основании анализа в лобовой точке вихрей Тейлора—Гертлера, которые интенсифицируют теплообмен. В области смешанного обтекания расчетное определение чисел Nu возможно только для ср <[ 70° при дальнейшем увеличении ср возникают явления перехода и отрыва пограничного слоя, и учет этих явлений в теоретическом плане еще недостаточно разработан.  [c.4]

Эффективным способом увеличения коэффициента теплоотдачи является лскусствениая турбулизация вязкого подслоя на поверхности твэла. В случае шаровых твэлов эта турбулизация происходит за счет возникающих при течении газа вихрей. Характерная особенность газового потока при движении его через шаровые твэлы — раннее наступление турбулентного режима течения. Из-за интенсивного вихреобразования лами-ларный режим течения нарушается при достижении чисел JRe=10-f-15. Предложены две схемы процесса течения охладителя в шаровых элементах.  [c.39]

Рассмотрим теплоотдачу в трубе с ленточным завихрителем, схема которой показана на рис. 8.8. Закрутка потока приводит к появлению неоднородного поля массовых сил в поперечном сечении потока, которое имеет много общего с полем массовых сил в змеевике. Канал, образованный ленточным завихрителем и стенкой трубы, представляет собой змеевик с поперечным сечением в форме полукруга. Поэтому в закрученном потоке, как и в змеевике, возникает парный вихрь (рис. 8.8), а режим течения может быть ламинарным, ламинарным с макровихрями и турбулентным.  [c.352]

Рассмотрим процесс поперечного обтекания одиночной цилиндрической трубы потоком жидкости (рис. 17.7). Плавное обтекание цилиндра возможно только при малых скоростях потока — при Re < 5. При всех значениях Re > 5 наблюдается отрыв потока от стенки трубы и образование в кормовой части двух симметричных вихрей, которые с увеличением скорости потока вытягиваются по течению, удаляясь от трубы. Ламинарный пограничный слой, образующийся на лобовой части по обе стороны от точки О, ирн 5 < Re < 2-10 отрывается от поверхности трубы в точке а, характеризующейся углом ф 82° (рис. 17.7, а). Увеличение толщины пограничного слоя от минимального в точке О до максимального в точке отрыва а приводит к увеличению термического сопротивления и уменьшению коэффициента теплоотдачи а. Коэффициент а имеет максн.мальное значение в точке О, минимальное — в точке отрыва а. В кор.мовой части значения а вновь увеличиваются за счет разрушения пограничного слоя и образования вихрей, турбулизирующих поток. При значительных числах Рейнольдса (Re > 2-10 ) ламинарный пограничный слой переходит в турбулентный (точка Ь на рис. 17.7, б) и место отрыва от трубь перемещается по потоку (точка а). Это приводит к улучшению обтекания цилиндра (ср 120") и уменьшению вихревой зоны.  [c.191]


Длину участка тепловой стабилизации при ламинарном течении жидкости с постоянными теплофизическими свойствами и температурой на входе i = idem) для гидродинамически стабилизированного движения можно определить по формуле /нт/й = 0,055 Ре, при турбулентном движении /нт= (10ч-15) . Теплообмен в потоке несжимаемой жидкости описывается системой уравнений (17.14) (17.20) (17.22) и уравнением теплоотдачи.  [c.300]

Pa M trpHM процесс теплоотдачи при течении нагретого воздуха по сверхзвуковому охлаждаемому соплу с турбулентным пограничным слоем (рис. 11.27) [6]. Число факторов, осложняющих теплоотдачу в модельном сопле, значительно меньше, чем в сопле реального двигателя. Параметры воздуха на входе в сопло (в ресивере) следующие давление Ро=1,ОМПа/м% температура Го==830 К, отношение температуры охлаждаемой стенки сопла к температуре торможения равно примерно 0,5, число Маха на выходе из сопла (вблизи среза) 3,6. Исследовался турбулентный пограничный слой в различных сечениях вдоль сопла измерялись профили скорости (микротрубками полного напора) и температуры (термопарами). Измерялись статическое давление, локальный удельный тепловой поток в стенку и температура стенки со стороны охладителя в нескольких точках внутренней поверхности сопла. Параметры воздуха перед соплом измерялись, а вдоль оси сопла вычислялись по формулам для адиабатного течения газа.  [c.248]

Перейдем к рассмотрению теплоотдачи при турбулентном движении жидкости в трубе. Развитый турбулентный режим течения в трубе осуществляется при Re lOOOO. В диапазоне 2300Re1 O в трубе наблюдается переходный режим течения — неустойчивый режим, характеризующийся сменой ламинарного и турбулентного потока. Такое состояние характеризуется так называемым коэффициентом перемежаемости, O io l, представляющим собой относительное время существования турбулентного потока величина 1—со приходится на долю ламинарного потока. Надежные рекомендации по расчету теплоотдачи при переходном режиме пока не разработаны. Поэтому возможны лишь оценки по минимальному и максимальному коэффициентам теплоотдачи для ламинарного и турбулентного режимов соответственно с учетом коэффициента перемежаемости.  [c.386]

Теплоотдача при турбулентном пограничном слое. Аналитический расчет теплоотдачи в турбулентном слое представляет большие трудности вследствие сложности самого двихсения и сложности механизма переноса количества движения и теплоты. Особенностью турбулентного течения является пульсационный характер движения. На рис. 2.34 показана осциллограмма колебаний скорости в фиксированной точке турбулентного потока. Отклонеггие мгновенной скорости w от средней w называется пульсацией. Наличие пульсаций как бы увеличивает вязкость, и тогда полная вязкость турбулентного потока будет суммой двух величин — молекулярной вязкости и дополнительной турбулентной. Турбулентная вязкость ji,p не является физическим параметром теплоносителя, как коэффициент динамической вязкости, и характеризует интенсивность переноса количества движения в турбу-лентно.м потоке. Аналогично вязкости в уравнении движения, в дифференциальном уравнении энергии дополнительно к молекулярной теплопроводности появляется турбулентная теплопроводность характеризующая турбулентный перенос теплоты и также не являющаяся физическим параметром теплоносителя.  [c.129]

В заданных конкретных условиях для каждой жидкости существует предельное значение критерия Kw, выше которого влияние механизма турбулентного обмена в однофазной среде становится пренебрежимо малым. Однако в общем случае эта граница не может быть точно определена только с помощью критерия Kw [182]. Дело в том, что при кипении жидкости с заданными физическими свойствами количество теплоты, вынесенное из пристенной области за счет процесса парообразования, пропорционально ql rp"), а интенсивность турбулентного обмена в однофазной среде определяется значением числа Рейнольдса Re = twi/v, а не одной только скоростью W [182]. Например, при фиксированных значениях плотности теплового потока я скорости циркуляции интенсивность переноса теплоты при турбулентном течении однофазной среды с увеличением диаметра трубы уменьшается. Следовательно, этот механизм переноса перестает влиять на теплоотдачу к кипящей жидкости в трубе большего диаметра при меньшем значении q и, следовательно, Кш- При механизмов переноса теплоты с увеличением вязкости жидкости также смещается в сторону меньших значений критерия К -При кипении в трубах коэффициент теплоотдачи зависит также от иаросодержания потока. Эта зависимость обусловлена возрастанием истинной скорости жидкой фазы w и изменением структуры потока по мере накопления в нем пара при неизменном массовом расходе парожидкостной смеси.  [c.228]


Смотреть страницы где упоминается термин Поток Течение турбулентное — Теплоотдач : [c.31]    [c.22]    [c.110]    [c.220]    [c.90]    [c.187]    [c.307]    [c.394]    [c.43]    [c.49]    [c.232]    [c.343]    [c.288]   
Справочник машиностроителя Том 2 (1955) -- [ c.144 ]



ПОИСК



Теплоотдача

Теплоотдача к турбулентному потоку при

Теплоотдача при турбулентном течении

Течение турбулентное

Турбулентность потока

Турбулентный поток



© 2025 Mash-xxl.info Реклама на сайте