Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные свойства металлов и их определение

ОСНОВНЫЕ СВОЙСТВА МЕТАЛЛОВ И ИХ ОПРЕДЕЛЕНИЕ  [c.15]

Глава I ОСНОВНЫЕ МЕХАНИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПОСОБЫ ИХ ОПРЕДЕЛЕНИЯ 1. Механические свойства металлов и их характеристика  [c.3]

Основным показателем высокого качества цветных металлов является минимальное содержание примесей — их чистота, определяющая наиболее естественное свойство каждого вида металлов, и их значимость при получении сплавов с определенными характеристиками. В связи с возросшими технологическими возможностями очистки металлов постепенно исчезает их деление на первичные и вторичные, оно заменяется критерием — степенью чистоты.  [c.132]


Механические свойства металлов и сплавов в основном предопределяются их структурным строением. По структурному строению заготовки можно судить о ее качестве, определить условия предварительной обработки (литье, обработка давлением, сварка, термическая или химико-термическая обработка). Рассмотрим основные способы определения структуры металлов и сплавов.  [c.39]

Общие сведения об электродах. Покрытые электроды служат для ручной сварки сталей, цветных металлов и их сплавов, чугуна. По объему применения ручная сварка в сварочном производстве стоит на первом месте. Поэтому по объему выпуска покрытые электроды занимают в стране ведущее место. Покрытые электроды представляют собой металлические стержни, на поверхность которых опрессовкой под давлением или просто погружением в раствор наносится покрытие. В настоящее время для нанесения покрытия в основном используется первый способ. В зависимости от материала, из которого изготовлено свариваемое изделие, его назначения к электродам предъявляются определенные требования, которые можно разделить на общие и специальные. Все электроды должны обеспечивать минимальную токсичность при сварке и изготовлении, устойчивое горение дуги, равномерное расплавление электродного стержня и покрытия, хорошее формирование шва, получение металла шва требуемого химического состава и свойств, высокую производительность при небольших потерях электродного металла на угар и разбрызгивание, сохранение технологических и физико-химических свойств в течение определенного времени, получение металла шва, свободного от дефектов, достаточную прочность покрытия, легкую отделимость шлаковой корки от поверхности шва. К специальным требованиям относится получение металла шва с определенными свойствами — окалиностойкость, жаропрочность, коррозионная стойкость, износостойкость, повышенная прочность получение швов с заданной формой — глубокий провар, вогнутая поверхность шва возможность сварки определенным способом — опиранием вертикальных швов сверху вниз, во всех пространственных положениях.  [c.51]

Работоспособность сварных соединений и сварных конструкций в целом во многом определяется качеством сварных швов. Вопросы надежности работы сварных конструкций в настоящее время приобретают все большее значение из-за их эксплуатации при высоких и низких температурах, в агрессивных средах, при больших рабочих напряжениях. При обработке материалов, в том числе и при сварке, практически всегда образуются различные дефекты. Вид дефектов и механизм их появления зависят от особенностей технологического процесса. При сварке плавлением образование дефектов определяется характером взаимодействия жидкого и твердого металлов, а также металлов с газами и шлаком. Жидкий металл растворяет определенное количество газов из воздуха и газообразных продуктов разложения электродного покрытия. Основными газами, влияющими на свойства металла и чаще всего присутствующими в металле, являются кислород, водород и азот. Водород физически растворяется в расплавленном металле, а кислород и азот с большим количеством металлов вступают в химическое взаимодействие. В процессе охлаждения вследствие снижения растворимости газов в металле происходит их выделение.  [c.228]


Основные механические свойства металлов и способы их определения  [c.21]

Как будет показано в разд. 2.6, вид результатов ЛК не меняется при обобщении теории для учета многочастичных взаимодействий, если исключить экстремальные ситуации. Однако в формуле ЛК не учтены два осложняющих обстоятельства, которые иногда оказываются практически важными — магнитное взаимодействие и магнитный пробой, уже упомянутые кратко в разд. 1.3. Мы отложим подробный анализ этих явлений до гл. 6 и 7 соответственно, чтобы сейчас можно было рассмотреть приложения формулы ЛК, не заботясь преждевременно об усложнениях. Примерно половина оставшейся книги будет посвящена в сущности экспериментальному подтверждению формулы ЛК, определению различных параметров и их использованию для изучения основных свойств металлов. Эта программа уже была кратко изложена в разд. 1.4.  [c.98]

Под качеством продукции понимают совокупность всех свойств продукции, обеспечивающих ее использование в определенных целях. Вид и назначение продукции определяют состав основных свойств и требований. Например, качество металлов определяется химическим составом и механическими свойствами качество деталей — их конструкцией, технологичностью, точностью, прочностью, жесткостью, износостойкостью и т. д. качество машин, приборов, оборудования (конечных изделий)— совершенством их конструкции и эксплуатационными показателями.  [c.14]

Работоспособность конструктивных элементов оборудования представляет собой очень широкое и комплексное понятие, охватывающее возможность выполнять свои рабочие функции без разрушений и аварий в течение длительного, но определенного и ограниченного времени. При этом должна быть обеспечена безопасность и надежность эксплуатации, соответствующая объектам такого ответственного назначения, как сосуды и аппараты, работающие под внутренним давлением. При оценке работоспособности конструктивных элементов аппаратов необходимо опираться на данные о реальной их дефектности и данные о реальных механических характеристиках металла с учетом эффектов старения. Диагностическое оборудование должно давать возможность производить измерения всех основных параметров повреждаемости, определяющих работоспособность элементов. Необходимо иметь методы, позволяющие оценивать работоспособность по данным о дефектах, свойствах металла в процессе эксплуатации, параметрах нагруженности с учетом перепадов давления, состояния коррозионной защиты и др.  [c.277]

Опыт, накопленный при изучении проводимости металлов и сплавов, экспериментальная техника, созданная для исследования электроизоляционных материалов, служат базой для определения электрических свойств покрытий. Рассматриваются многие свойства удельное электрическое сопротивление, электрическая прочность , электрическая проводимость, контактное сопротивление между покрытием и основным металлом, диэлектрическая проницаемость,, температурный коэффициент электрического сопротивления. Что касается керамических покрытий, которые используются в качестве электроизоляционного материала, то основным их свойством следует считать электрическую прочность. За электрическую прочность часто принимают напряженность пробоя, отнесенную к усредненной толщине покрытия.  [c.85]

Физико-химические способы применяют преимущественно для изготовления совершенных нитевидных кристаллов высокой прочности. Среди этой группы способов основным является получение усов восстановлением различного рода соединений металлов. В качестве исходных материалов используют галогениды, сульфиды и оксиды, восстанавливаемые газообразным или твердым восстановителем. Тонкие нитевидные кристаллы растут при определенных условиях восстановления (температура, парциальное давление восстанавливаемого соединения, свойства восстановителя и др.), причем большинство кристаллов при оптимальных условиях процесса получаются гладкими и прямыми, диаметр их 1 - 20 мкм. Так, температура восстановления галогенидов составляет для меди 650 °С, железа 730-760 °С, никеля 740 "С, марганца 940 С, кобальта 750 °С. Повышение температуры восстановления сверх оптимальной приводит сначала к возникновению пластинчатых образований, а затем к росту крупных, хорошо развитых кристаллов, тогда как усы не образуются.  [c.182]


В лабораторной практике контроль качества покрытий складывается в основном из определения толщины и пористости покрытий, а также из испытаний их механических свойств (твердости, пластичности, износоустойчивости, прочности сцепления покрытия с основным металлом) и коррозионной стойкости.  [c.40]

Твердые тела, как известно, разделяются на аморфные и кристаллические, Считается, что в аморфных телах, типичными представителями которых является обычное стекло и бакелит, атомы и молекулы расположены хаотически, неориентированно, и потому аморфные тела изотропны, т. е. механические, оптические и электрические их свойства одинаковы во всех направлениях. Характерным линейным размером аморфного вещества является среднее межатомное расстояние. Кристаллические тела, типичными представителями которых являются металлы, напротив, имеют правильную структуру, элементарные частицы их (атомы, ионы) расположены в определенном порядке. Например, железо имеет кубическую решетку. Однако кусок железа представляет собой не кристалл, а поликристаллическое тело, состоящее из зерен, являющихся кристаллами (кристаллитами), размеры которых имеют порядок 0,01 мм и более, т. е. значительно больше межатомных расстояний. Каждый кристаллит является анизотропным, т. е. имеет различные свойства в разных направлениях и потому характеризуется не только размером и формой, но и ориентацией в пространстве, определяемой физическими свойствами. Но и отдельное зерно не может быть взято за основной объем при изучении внутренних напряжений и деформаций в больших телах, главным образом по той же причине, что и атом здесь дело ухудшается еще тем, что формы зерен неправильны  [c.11]

Процесс пайки протекает в условиях перегрева взаимодействующих твердого и жидкого металлов до определенной температуры. При этом происходит термическая активация атомов взаимодействующих металлов, что дает дополнительный вклад в активность атомов твердого и жидкого металлов и повышает их реакционную способность образования соединений не только между собой, но и с атомами веществ окружающей среды. Это требует вести процесс пайки в таких условиях, когда внешняя среда обладает возможно меньшей активностью взаимодействия с основным металлом и расплавом припоя. Однако, поскольку реальные металлы всегда содержат неметаллические примеси, а также имеют на своей поверхности окисные и адсорбционные пленки, то окружающая среда должна обладать флюсующими свойствами и связывать примесные атомы в соединения. Ус-  [c.111]

Типоразмеры испытательных машин и приборов зависят от их назначения, области применения, принципа работы и конструктивных особенностей. Остановимся на классификации машин и приборов, применяемых для определения механических свойств металлов. Они выпускаются многими отечественными и зарубежными предприятиями и подразделяются на следующие основные группы  [c.5]

Давно известно, что определенные жидкости могут облегчать процесс резания. В настоящее время в практике резания металлов используется значительное количество различных жидкостей. Однако выбор и применение этих жидкостей не всегда сопровождается максимальным экономическим эффектом. В данной главе описываются основные свойства смазочно-охлаждающих жидкостей (СОЖ) и принцип их выбора.  [c.78]

Механизмы достижения предельных состояний - хрупкого, вязкого, усталостного разрушения и ползучести - подробно рассмотрены в гл.2. Только на основе выявленного вида предельного состояния конструкции следует выбирать критерий предельного состояния. Значительная часть этих критериев прямо или косвенно относится к характеристикам механических свойств металла, из которого изготовлена конструкция. Основные механические характеристики металла и способы их прямого или косвенного определения приведены в гл.З.  [c.20]

Понятие "критерий" применяется здесь в более узком смысле, чем общепринятое — признак, на основании которого производится оценка. В данной системе металл — среда критерий должен обладать свойствами константы. Очевидно, что в этом случае основное значение приобретает правильное определение условий испытаний, их физическая обусловленность, когда определяемый показатель становится критерием, т.е. является объективной характеристикой свойств материала и принимает одинаковые значения при различных способах его определения.  [c.29]

В литейном производстве для изготовления отливок применяют различные металлы и сплавы. Чистые металлы редко применяют для производства отливок. В основном в технике применяют сплавы черных и цветных металлов. Так, в отечественном машиностроении 74% всего литья изготовляют из серого чугуна, 3% из ковкого чугуна, 21% из стали и 2% из легких и тяжелых цветных сплавов. Литейные сплавы, кроме заданных прочностных и физико-химических свойств, должны обладать определенным комплексом технологических литейных свойств, характеризующих пригодность их для заполнения литейных форм и позволяющих получить качественные отливки.  [c.240]

Металлы как кристаллические вещества при данных температуре и давлении характеризуются строго определенным пространственным расположением атомов, т. е. металл в твердом состоянии при данной температуре имеет энергетически устойчивое кристаллическое строение с минимумом свободной энергии, которой обладает атом или комбинация атомов. Нагрев или охлаждение вносят в состояние атомов энергетические изменения, а это может привести к перестройке в их взаимном расположении с минимумом свободной энергии. Следовательно, изменение температуры приводит к изменению свободной энергии. Однако до определенных температур нагрева металл остается кристаллическим телом. Повышение температуры приведет к дальнейшему изменению энергетического состояния атомов, близкому к энергетическому состоянию жидкости. При увеличении нагрева цельность металлической решетки нарушается, а в отдельных участках могут сохраняться отдельные группировки относительно закономерно построенных атомов. В силу энергетических условий они не могут быть устойчивыми, поэтому происходит их систематическое разрушение и образование. Эти группировки атомов в процессе кристаллизации становятся центрами кристаллизации. Чем меньше этих центров, тем из более крупных кристаллов будет состоять металл при переходе из жидкого состояния в твердое. Следовательно, условия плавления металла оказывают влияние на процесс кристаллизации и соответственно на свойства металла сварного шва. Однако из-за большого перегрева металла в сварочной ванне к моменту кристаллизации останется очень мало указанных центров кристаллизации или они вообще будут отсутствовать. Поэтому в сварочную ваину необходимо вводить искусственные центры кристаллизации, природа и количество которых зависят от условий сварки и используемых сварочных материалов, состава основного и присадочного металлов.  [c.5]


Теория предельного состояния и теория идеальных упруго-пластических сред дают идеализированное описание основных свойств процесса деформации и разрушения большинства твердых тел в области вязкого разрушения в широком диапазоне времени, температур, скорости деформирования и т. д. Зародившись в работах Ш. Кулона, А. Сен-Венана, А. Треска, М. Леви, О. Мора, Л. Прандтля, эти теории затем были всесторонне разработаны советскими и зарубежными учеными. Практическое значение этих теорий выходит далеко за рамки определения прочности и несуш ей способности конструкций. Здесь следует указать в первую очередь их приложения в вопросах технологической обработки металлов, механики грунтов и горных пород, недавние приложения к решению проблемы псевдоожижения в химической технологии.  [c.392]

Механика разрушения, являясь сравнительно молодой отраслью механики, продолжает находиться в периоде становления, в особенности в части, относящейся к практическому определению свойств металлов и их использованию в инженерных расчетах на прочность. Продолжают развиваться представления о физической сущности некоторых щ)ите-риев механики разрушения, расчетной связи между ними, предпочтительности или недостаточности отдельных критериев в кошфетных условиях их использования, технике проведения испытаний и обработки результатов. Естественно, что в этом случае основные усилия многих исследователей направлены на решение принципиальных вопросов, не осложненных присутствием сварных соединений с неоднородностью их свойств.  [c.47]

Основным показателем качества цветных металлов является минимальное содержание в них примесей — чистота, определяющая наиболее естественное значение свойств металлов и. соответствующую эффективность при получении сплавов с определенными характеристиками. В связи с возросщими технологическими возможностями очистки металлов и сплавов постепенно исчезает деление их на первичные и вторичные и вводится критерий — степень чистоты. Свойства, особенно прочностные, цветных металлов и сплавов в значительной мере зависят от технологии образования изделий и от их размеров (масштабный фактор) и поэтому они, как правило, нормируются в стандартах и ТУ на конкретные изделия из цветных металлов и сплавов.  [c.77]

Как видно из характеристик основных свойств жидких металлов (табл. 1), а также из их температурных зависимостей, имеется достаточно широкий выбор жидких металлов с необходимыми теплофизическими свойствами. Для определенных условий приемлемыми свойствами обладают низкоплавкие сплавы металлов (табл. 2). Как уже указывалось в предыдущем параграфе, наряду с физико-химическими свойствами должны учитываться эксплуатационные характеристики, в первую очередь — взаимодействие жидких металлов и их паров с конртрукционными материалами.  [c.47]

Магнитные методы исследования применяют как для определения величины магнитных свойств металлов и сплавов — коэрцитивной силы Не, остаточной индукции Вг и магнитной проницаемости 1 (используемых, например, в электромашиностроении), так и для изучения превращений протекающих в металлах и сплавах в твердом состоянии. Еще недавно посредством магнитных исследований в основном изучались превращения в ферромагнитных металлах и сплавах теперь их применяют для изучения и парамагнитных металлов и сплавов. Магнитные испытания позволяют исследовать изменения величины магнитной восприимчивости у, магнитного насыщения 4л7 , коэрцитивной силы и другие магнитные свойства. Для исследования магнитных свойств служат специальные установки наиболее широко применяются баллистическая установка и анизометр Н. С. Акулова.  [c.25]

В связи с тем, что суммарный коррозионно-механический износ является результатом многих процессов, а также с тем, что внимание специалистов было сосредоточено главным образом на химической коррозии наименее стойких деталей из цветных металлов или сплавов (например, вкладышей подшипников коленчатого вала), опасность и значение электрохимической коррозии долгое время недооценивались. Это помимо всего прочего привело к путанице в терминах и определениях, принятых в научно-тех1нической литературе по коррозии и защите металлов и шо нефтепродуктам. В табл. 4 приведены основные понятия и термины применительно к проблеме нефтепродукты и коррозия по их состоянию на се-Г0ДНЯШ1НИЙ день. Как видно, несмотря на сопутствующие процессы необходимо четко различать коррозионные свойства нефтепродуктов (их коррозионную агрессивность или, наоборот, противокоррозионные свойства), связанные в основ1Ном с химическими процессами и зависящие от способности самих нефтепродуктов вызывать или предотвращать химическую коррозию металла, и их защитные свойства, т. е. способность защищать металл от электрохимической коррозии в присутствии электролита. В соответствии с этим необходимо, в частности, различать противокоррозионные присадки к нефтепродуктам, добавляемые для улучшения их коррозионных свойств, и маслорастворимые ингибиторы коррозии, улучшающие защитные свойства нефтепродуктов. Как показано  [c.15]

В основе всякого протяженного разрушения лежит перераспределение энергии. Поэтому из названных тольга энергетические критерии при соответствующей точности их определения могут бьггь применены дая количественных расчетов распространения и торможения трещин. Достигнутый уровень знаний в данной области позволяет в основном давать только сравнительные оценки свойств металлов и лишь в единичных условиях вести расчеты.  [c.179]

Процесс сварки конструкции сопровождается термическим и деформационным воздействиями на свариваемый металл, производимыми при определенных условиях, связанных с технологией получения неразъемного соединения. Данные условия определяют способ сварки, тип и химический состав применяемых материалов (сварочной проволоки. электрода, флюса, газа и т. д.) и зависят от многих факторов, главными из которых являются марка свариваемых сталей и сплавов, их толщина и тип сварной конструкции (балка, ферма, оболочка, детали машин, корпуса раз/шчно-го рода изделий). При этом химический состав и механические свойства металла шва, выполненного, например, сваркой плавлением, в значительной степени отличаются от состава и свойств основного металла, так как на стадии существования сварочной ванны происходит смешивание наплавляемого присадочного металла и расплавляемого основного. Поэтому с точки зрения химического состава и механических свойств принято считать, что в сварном соединении имеются как минимум два различных металла — свариваемый и металл шва. Последний рассматривают как  [c.13]

В настоящем издании справочника приведены основные физические характеристики металлов атомная масса, атомный радиус, число электронов в атоме (атомный номер) и их строение по сравнению со строением благородных газов (гелия — is , неона—[He]2s 2p , аргона — [Ме]3з 3/) криптона— [Ar]Зii °45 4p ксенона— [Kr]4d 5s25pe р . дона [Xe]4/ 5d 6s 6p ), электроотрицательность, ионизационный потенциал, плотность, температуры плавления и кипения. Дополнительно приведены краткие сведения о ресурсах металлов, точности и достоверности определения свойств материалов, сверхиластичностн и электропластичности металлов.  [c.6]


Основным недостатком графитовых материалов является их пористость, доходящая до 30—35%- Для уменьшения пористости и получения непроницаемого материала графит пропитывают различными металлами и смолами. Пропитку производят в автоклавах при переменном чередовании давления и разрежения в течение определенного времени. Количество смолы, проникающей в поры графита, доходит до 20% от веса основного материала и зависит от его пористости, толщины и режима пропитки. В результате пропитки механическая прочность графита значительно повышае,тся, антифрикционные свойства остаются без изменения.  [c.11]

При выборе щелочного металла как теплоносителя приходится учитывать не только его теплофизические свойства, но и весь комплекс качеств, определяющих эксплуатационные особенности. Последние становятся решающими, когда целевое назначение проектируемой установки не обусловливает определенный вид рабочей среды и допускает выбор ее из нескольких возможных вариантов. В этом случае при- выборе теплоносителя нужно принимать во внимание следующие факторы потребление щелочного металла в народном хозяйстве, масштабы его производства, его стоимость, способы упаковки и транспортировки наличие конструкционных материалов, способных работать в требуемом диапазоне температур и давлений, размеры их промышленного выпуска и сортамента сложность технологии подготовки теплоносителя перед загрузкой в контур пожарная опасность и инженерные средства для локализации и ликвидации возгораний трудоемкость и сложность ремонтных работ время на приведение стенда в рабочее состояние. Одним из основных факторов является степень освоенности, или накопленный опыт использования рассматриваемого металла в качестве теплоносителя наличие средств перекачивания, конструкций теплообменного оборудования, устройств очистки от вредных примесей и контроля их содержания, контрольно-измерительных приборов и других средств. В конкретных случаях могут возникнуть и другие требования, кото Н  [c.5]

Прибор автоматически молсет регистрировать диаграмму вдавливания в координатах Р, h, а также в координатах Pjh, h. При подсчете Н по методу Бриыелля через глубину невосстановленного отпечатка, т. е. Н = Р1(кОк), отношение P/h связано с Н постоянным для данного шара коэффициентом 1/(я 1), что позволяет просто оценить значение Н в любой точке диаграммы. Совершенствование приборов для автоматической записи диаграммы вдавливания, детальное исследование диаграмм и их связи с диаграммами растяисения представляют основную задачу при дальнейшей разработке безобразцовых методов определения механических свойств металлов по характеристикам твердости.  [c.348]

Для точного построения диаграмм равновесия важно предотвратить загрязнение сплавов при их изготовлении и в ходе термического анализа. Поэтому выбор огнеупоров имеет важное значение, а для активных сплавов с высокой температурой плавления часто это одна из основных проблем исследования. Обычно можно сравнительно медленно повышать температуру ТИГЛ1Я, и при этих условиях основное требование заключается в том, чтобы огнеупорный материал обладал определенной физической и химической стабильностью в рабочем температурном интервале. Следующие наиболее важные свойства — прочность и сопротивление термическим ударам. Сопротивление термическим ударам определяется главным образом коэффициентом линейного расширения материала и становится особенно важным, если по условиям работы требуется проводить ускоренный нагрев или охлаждение. Если, например, необходимо помеш,ать тигель в раскаленную добела печь или извлекать его обратно, то невозможно применять огнеупорный материал с высоким коэффициентом расширения, даже если ои соответствует условиям работы при медленном нагреве или охлаждении. Тигель должен выдерживать не только воздействие расплавленного металла, но и воздействие применяемых шлаков и атмосферы.  [c.81]

Применение двух- и многослойных сталей и сплавов, обладающих взаимодополняющими физико-механическими свойствами, позволяет значительно снизить металлоемкость элементов конструкций. Проблема проектирования, создания и эксплуатации биметаллических конструкций повышенного ресурса, в частности высоконагру-женного оборудования АЭС, делает весьма актуальными экспериментальные исследования, направленные на разработку методов оценки несущей способности таких конструкций не только по интегральным характеристикам прочности, но и с учетом наличия трещиноподобных дефектов на стадиях инициации разрущения, а также распространения и остановки трещин. Развитие методов определения критериев сопротивления разрушению и их анализ необходимы для оптимизации свойств биметалла путем правильного выбора сочетания разнородных составляющих соединения, назначения технологического способа его изготовления и определения рационального соотношения толщин основного металла и плакирующего слоя. Кроме того, это необходимо при проведении расчетов на прочность и оценке ресурса биметаллических элементов конструкций, определении допускаемых размеров дефектов, выборе методов и средств дефектоскопии.  [c.107]

В то время как возрастало использование стеклопластиковых композитов при создании морских судов за последние годы, расширение областей применения СП проходило относительно медленно. Это происходило частично из-за недостатка знаний или недостаточно хорошей осведомленности конструкторов морских судов о свойствах и критериях использования композиционных материалов. Кроме того, суш,ествует понятное сопротивление части конструкторов и судостроителей этим новшествам из-за существенных различий переработочных характеристик этих материалов по сравнению с традиционным металлом, а именно они непластичные (нековкие), не могут быть сварены и конструирование на их основе требует рассмотрения как основного материала, так и процессов его переработки, долговременной эксплуатации в условиях определенной окружающей среды и т. д. Однако приобретенный опыт показал, что при правильном использовании композиционных материалов возникают новые существенные возможности по уменьшению стоимости и массы, улучшению внеш- него вида, увеличению долговечности, снижению эксплуатационных затрат и увеличению срока службы судов. Все это сегодня должно стать значительной частью той информации и практического опыта, которую мог бы получить конструктор морских судов. Тем более, что с развитием КМ появляюгся новые материалы, которые при сопоставлении по прочности и жесткости приближаются к любым металлам, существующим сейчас или могущим появиться в ближайшем будущем. Ближайшие 20— 30 лет могут привести человечество в эру композиционных материалов.  [c.535]

Надежность работы в значительной мере зависит от соответствия примененных материалов и их качества требованиям нормативнотехнологической документации. Действующие нормы и правила предусматривают механические испытания и металлографический анализ основного металла и сварных соединений котлов, трубопроводов пара и горячей воды и сосудов, работающих под давлением. Объемы и методы механических испытаний и металлографических исследований строго регламентированы [23, 24, 25]. Механические испытания ставят своей задачей определение механических свойств при комнатной и рабочей температуре, без знания которых нельзя правильно выбрать материал для изготовления детали и оценить состояние металла в процессе эксплуатации. Основными видами механических испытаний являются испытания на растяжение, твердость и на ударный изгиб (динамические испытания). Технологические испытания на загиб, раздачу и свариваемость служат для оценки возможности проведения технологических операций, необходимых для изготовления и монтажа оборудования (сварки, гибки, вальцовки и т. п.). Такие важнейшие для котельных материалов испытания, как испытания на ползучесть, длительную прочность, сопротивление усталости, релаксацию напряжений, не предусматриваются действующими правилами котлонадзора в качестве контрольных и служат в основном для выбора допускаемых напряжений и установления ресурса работы элементов, изготовленных из различных сталей.  [c.8]

Эффект избирательного переноса при трении металлов является высоко, структурно-чувствительным и характеризуется определенными закономерностями структурных превраш,ений в поверхностных слоях взаимодействующих металлов. Основные структурные изменения связаны с образованием на контактирующих поверхностях пленки меди с особыми свойствами, формированием границы раздела между защитной пленкой меди и основным металлом и определенным специфическим перераспределением легирующих и примесных элементов металлов и сплавов. Эти превращения в структуре материала связаны с комплексом физикохимических процессов в зоне контактного взаимодействия, они являются необходимым условием избирательного переноса и наряду с общепринятыми критериями (резкое снижение интенсивности износа, вплоть до безызносности, и коэффициента трения до тысячных долей) их рассматривают как критерии явления избирательного переноса при трении.  [c.134]


До недавнего времени считали, что теплофизические свойства сталей мало меняются в зависимости от их структурного состояния, хотя в общей формулировке известна зависимость свойств, в том числе и тепло-физических, от структуры металла. Поэтому были исследованы основные теплофизические свойства ряда сталей после обработки их в оптимальных для механических свойств режимах ТЦО. Теплофизические свойства, в частности теплопроводность к сплава, определяются следующими его структурными факторами химическим составом, размером и формой зерен, строением границ и ориентацией зерен, ликвацией, стро-чечностью, упорядоченностью твердых растворов и т. д. Имеющиеся в справочной литературе данные о теплопроводности получены в основном для металлов, находящихся в равновесном состоянии после отжига, высокого отпуска, и не отражают в полной мере влияния ТО на теплопроводность. Это привело к распространению мнения о независимости к от режимов ТО. Однако известно, что у закаленных стальных образцов Я на 30—40 % ниже, чем у отожженных. Исследование показало, что в результате ТЦО сплавов в соответствующих режимах к существенно изменяется. В отдельных случаях к снижалась в 2 раза по сравнению с отожженным состоянием сплава. В табл. 3.32 приведены результаты определения к при комнатной температуре ряда сплавов, прошедших стандартный отжиг и СТЦО. В последней колонке  [c.126]

Современные методы расчёта (см. гл. П — X зтого тома) отражают влияние динамичности нагрузок, формы и жёсткости деталей, типа напряжённого состояния, пластичности, усталости, ползучести и ряда других факторов на несущую способность, поддающихся расчётному или экспериментальпо.му определению. Ряд факторов не поддаётся таким определениям, и их влияние должпо быть отражено в запасе прочности на основании наблюдений за работой деталей и узлов, статистического анализа данных эксплоатации и испытания машин. И. С. Стрелецким [47] и А. Р. Ржаницыным [21] на основании статистических кривых распределения возникающих усилий и отклонений механических свойств, а также анализа основных факторов отклонения между действительными и расчётными усилиями, обоснована каноническая структура запаса прочности п в виде произведения минимального числа сомножителей п = 1- г,2- Щ, каждый из которых отражает важнейшие факторы отклонения между рассчитываемой и фактической несущей способностью детали или конструкции [31]. К одной группе факторов относятся а) разница в величине нагрузок, вводимых Б расчёт, и нагрузок действительных (определение последних в ряде случаев затруднительно, например, нагрузки, развиваемые при горячей и холодной обработке металлов, нагрузки на ходовую часть автомобилей, динамические усилия на лопатки турбин и т. д.) б) разница в величине уси-  [c.383]

При дуговой сварке никеля и его сплавов пет необходимости всегда стремиться к получению металла пша, обладаюгцего таким же химическим составом и структурой, как свариваемый материал. Например, технически чистый никель не удается сварить без пор, трещип, с достаточно высокими показателями механических и коррозионных свойств шва, если его химический состав и структура будут индептичными основному металлу. Для получения сварных швов, удовлетворяющих разнообразным требованиям, часто приходится прибегать к комплексному легированию их элементами, не содержащимися в основном металле, и одновременно препятствовать обогащению шва вредными примесями. В зависимости от метода сварки никеля могут быть применены различные способы легирования металла шва. Наиболее надежно легирование электродной проволокой определенного состава в сочегашш с пассивным нелегирующим электродным покрытием, флюсом плп защитой инертным газом. При этом должны быть обеспечены условия, обеспечивающие полное усвоение сварочной ванной легирующих элементов, содержащихся в основном и присадочном металлах. Во время ручной сварки легирование шва может осуществляться через электродное покрытие, в состав которого вводятся соответствующие порошки металлов пли ферросплавов. При сварке под обычными плавлеными флюсами легирование металла шва является следствием физико-химических процессов между окислами флюса и никелем.  [c.181]


Смотреть страницы где упоминается термин Основные свойства металлов и их определение : [c.12]    [c.195]    [c.215]    [c.214]    [c.9]    [c.324]   
Смотреть главы в:

Основы металловедения и теории коррозии  -> Основные свойства металлов и их определение



ПОИСК



Материалы и их свойства Основные механические свойства металлов и способы их определения

Мер основные свойства

Металлов Свойства

Неразрушающий (безобразцовый) контроль механических свойств металла по характеристикам твердоТвердость и основные методы ее определения

Определение свойств металлов

Основные Основные определения

Основные методы определения механических свойств металлов и i сплавов

Основные механические и технологические свойства металлов и способы их определения

Основные механические свойства металлов и способы их определения

Основные определения

Свойства основного металла

Ф Основные свойства металлов



© 2025 Mash-xxl.info Реклама на сайте