Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость горения

Требования к статической устойчивости системы источник питания — сварочная дуга. Зависимость между напряжением дуги [/j,, необходимым для поддержания устойчивого горения дуги, и током дуги /д называется статической вольт-амперной характеристикой дуги.  [c.124]

Для обеспечения устойчивости горения дуги с возрастающей характеристикой применяют источники сварочного тока с жесткой или возрастающей характеристикой (сварка в защитных газах плавящимся электродом и автоматическая под флюсом током повышенной плотности).  [c.188]


Для питания сварочной дуги применяют источники переменного тока (сварочные трансформаторы) и источники постоянного тока (сварочные выпрямители и генераторы). Источники переменного тока более распространены, так как обладают рядом технико-экономических преимуществ. Сварочные трансформаторы проще в эксплуатации, значительно долговечнее и обладают более высоким КПД, чем выпрямители и генераторы постоянного тока. Однако в некоторых случаях (сварка на малых токах покрытыми электродами и под флюсом) при питании переменным током дуга горит неустойчиво, так как через каждые 0,01 с напряжение и ток дуги проходят через нулевые значения, что приводит к временной деионизации дугового промежутка. Постоянный ток предпочтителен в технологическом отношении при его применении повышается устойчивость горения дуги, улучшаются условия сварки в различных пространственных положениях, появляется возможность вести сварку на прямой и обратной полярностях и т. д. Последнее вследствие большего тепловыделения в анодной области дуги позволяет проводить сварку сварочными материалами с тугоплавкими покрытиями и флюсами  [c.188]

Флюсы служат для изоляции сварочной ванны от атмосферы воздуха, обеспечения устойчивого горения дуги, формирования поверхности шва и получения заданных состава и свойств наплавленного металла. Флюсы классифицируют по назначению, химическому составу и способу изготовления. По назначению они разделяются на флюсы для сварки низкоуглеродистых и низколегированных сталей, легированных и высоколегированных сталей.  [c.194]

Сварку сталей часто выполняют в смеси Аг + 5 % Ог. Кислород уменьшает поверхностное натяжение расплавленного металла, что способствует снижению критической плотности тока, при которой капельный перенос металла переходит в струйный. Одновременно повышается устойчивость горения дуги при относительно небольших токах, что облегчает сварку металла малой толщины.  [c.197]

Введение в состав электродных покрытий и флюсов влементов с низким потенциалом ионизации способствует быстрому зажиганию и устойчивому горению сварочной дуги за счет снижения эффективного потенциала ионизации газовой смеси.  [c.5]

Какие факторы влияют на устойчивость горения дуги под водой  [c.133]

Влияние турбулентности на дробление струи жидкости исследовано в работе [539]. Показано, что турбулентность способствует укорачиванию струи до начала ее распыления. В ряде работ [539— 541] изучено влияние запаздывания измельчения струи по времени на устойчивость горения и выполнены основные эксперименты. Теория распыления тонких слоев жидкости, получаемых с помощью тангенциальных сопел, рассмотрена в работе [895]. Критерий устойчивости получен из условия баланса сил межфазного поверхностного натяжения и аэродинамических сил.  [c.145]


Для повышения устойчивости горения дуги и стойкости электрода в состав вольфрамового электрода вводят обычно 1,5—3% окислов активирующих редкоземельных металлов (тория, лантана, иттрия), повышающих эмиссионную способность электрода.  [c.51]

Обеспечение устойчивости горения сварочной дуги, требования к источникам питания  [c.55]

Устойчивость горения сварочной дуги. В сварочную систему при дуговой сварке входят источник питания, дуга и ванна расплавленного металла (изделие). Высокое качество сварного соединения Обеспечивается в том случае, если вся система работает, во время ° варки устойчиво, стабильно во всех трех ее звеньях и прежде все-если обеспечивается устойчивое горение дуги.  [c.55]

От чего зависит устойчивость горения сварочной дуги  [c.64]

Источники сварочного тока. Для сварки под флюсом применяют источники переменного и постоянного тока с пологопадающей характеристикой. Используют преимущественно источники переменного тока в связи с большей экономичностью и хорошей устойчивостью горения дуги под флюсом. Для этой цели серийно выпускают трансформаторы ТСД-500-1, ТСД-1000-4 и ТСД-2000 в однокорпусном исполнении, со встроенными дросселями, с дистанционным управлением.  [c.73]

Сварка в защитных газах плавящимся электродом имеет ряд особенностей. Устойчивое горение дуги обеспечивается при высокой плотности постоянного тока (100 А/мм и выше) на возрастающей ветви вольт-амперной характеристики (см. рис. 28). Стабильность параметров сварного шва (его глубина и ширина) зависит от постоянства длины дуги, которая обеспечивается процессами саморегулирования длины дуги за счет поддержания постоянной скорости подачи электродной проволоки, равной скорости ее плавления.  [c.85]

Для устойчивого горения газа с малым содержанием воздуха, например, для природного газа и бутана (< 0,6), для коксового газа (< 0,45) требуется дополнительный обогрев реактора для поддержания температуры в зоне горения не ниже 1000 °С. При температуре порядка 1000 °С, как показывает опыт, можно считать, что продукты горения находятся в условиях химического равновесия. Поэтому в основу расчета составов защитных атмосфер могут быть положены значения констант равновесия газовых реакций и уравнений материального баланса.  [c.236]

К режимным мероприятиям снижения коррозии относят работу котла с пониженными избытками воздуха. При меньшем количестве воздуха От снижается количество SO (уменьшается концентрация атомарного кислорода), а следовательно, падает скорость коррозии. Аналогичные результаты получаются при рециркуляции дымовых газов в активную зону горения. Применение этих методов ограничено газомазутными котлами. Для твердых топлив по условиям выгорания частиц и устойчивости процесса горения От 1,05, а общий избыток воздуха в топке = 1,2-г-1,25. Рециркуляцию газов по условиям устойчивости горения применяют для топлив с выходом летучих V > АО %.  [c.116]

При нагревании твердого топлива без доступа воздуха его органическая масса разлагается, в результате чего образуются газы, водяные и смоляные пары и углеродсодержащий остаток. Суммарное количество выделяющихся летучих веществ увеличивается с увеличением температуры и времени выдержки. Этот процесс в основном заканчивается при 700—800°С, поэтому по ГОСТ 6382—75 выход летучих V , в % на горючую массу, определяется путем прокаливания 1 г топлива в закрытом тигле при 850 10°С в течение 7 мин. Выход летучих является важнейшей характеристикой горючей массы топлива и уменьшается по мере увеличения его возраста. Чем больше выход летучих, т. е. чем больше топлива превращается при нагревании в горючий газ, тем проще зажечь это топливо и легче поддерживать устойчивое горение. Органическая часть древесины и горючих сланцев при нагревании без доступа воздуха почти целиком переходит в летучие вещества (1/ =85-ь90%), в то вре-132  [c.132]

Скорость распространения фронта пламени по частицам имеет порядок всего нескольких метров в секунду. Поэтому даже при небольших скоростях потока прямой фронт пламени не может удерживаться в потоке и будет выноситься из камеры. Для обеспечения устойчивого горения приходится ставить в камере сгорания стабилизаторы, т. е. тела, на которых происходит поджигание потока и от которых отходит, косой фронт пламени (см. схему на рис. 48).  [c.102]


Покрытие предназначено для повышения устойчивости горения дуги, образования комбинированной газошлаковой защиты, легирования и рафинирования металла. Для изготовлепня покрытий применяют различные материалы (компоненты).  [c.92]

Зависимость паиряжоиия источ1[ика питания от силы тока нагрузки называется внешней характеристикой источника питания. Рассмотрим условия устойчивого состояния системы (устойчивого горения сварочной дуги).  [c.125]

Фактически величины dL ldI и dUJdl — динамические сопротивления сварочной дуги и источника питания при данной величине тока дуги /д у. Коэффициент — динамическое сопротивление всей энергетической системы источник питания — сварочная дуга в данном режиме работы. Таким образом, устойчивое горение дуги определяется только общим динамическим сопротивлением системы источник питания — дуга. Если оно положительно — режим устойчив. При нормальных сварочных режимах (сила тока дуги 100—800 А) dUp /dl 0. Это свойственно источникам с падающей внешней характеристикой (рис. 71, б), жесткой или даже возрастающей, но при условии, что dUJdl < dU,Jdl (рис. 71, б).  [c.126]

С другой стороны, н процессе деятельности человека об(>азуется большое количество горючих отходов, которые не считаются топливом в общепринятом смысле хвосты углеобогащения, отвалы при добыче угля, многочисленные отходы целлюлозно-бумажной промышленности и других отраслей народного хозяйства. Парадоксально, например, что порода , которую около угольных шахт складывают в огромные терриконы, зачастую самовозгорается и длительное время загрязняет дымом и пылью окружающее пространство, но ни в слоевых, ни 13 камерных топках ее не удается сжечь из-за большого содержания золы. В слоевых топках зола, спекаясь при горении, препятствует проникновению кислорода к частицам горючего, в камерных не удается получить нужную для устойчивого горения в них высокую температуру.  [c.143]

Электрические свойства дуги описываются статической вольт-амперной характеристикой, представляющей собой зависимость между напряжением и током дуги в состоянии устойчивого горения (рис. 5.3, а). Характеристика состоит из трех участков / — характеристика падающая, II — жесткая, /// — возрастающая. Самое широкое примеиеиие нашла дуга с жесткой н возрастающей характеристиками. Дуга с падающей характеристикой малоустойчива и имеет огра1П1ченное применение. В последнем случае для поддержания горения дуги необходимо постоянное включение в сварочную цепь осциллятора. Каждому участку характеристики дуги соответствует определенный характер переноса расплавленного электродного металла S сварочную ванну / и // — крупнокапельный, III — мелко-капельный или струйный.  [c.186]

Для питания дуги с жесткой характеристикой применяют источники с падающей или пологопадающей внешней характеристикой (ручная дуговая сварка, автоматическая под флюсом, сварка в защитных газах неплавящимся электродом). Режим горения дуги определяется точкой пересечения характеристик дуги 6 и источника тока / (рис. 5.4, б). Точка С соответствует режиму устойчивого горения дуги, точка А — режиму холостого хода в работе источника тока в период, когда дуга не горит и сварочная цепь разомкнута. Режим холостого хода характеризуется повышенным напряжением (60—80 В). Точка D соответствует режиму короткого замыкаиия при зажигании дуги и ее замыкании каплями жидкого электродного металла. Короткое замыкание характеризуется малым напряжением, стремящимся к нулю, и повышенным, но ограниченным током.  [c.187]

Источники сварочного тока с падающей характеристикой необходимы для облегчения зажигания дуги за счет повышенного иаиря-жеиия холостого хода, обеспечения устойчивого горения дуги и практически постоянной проплавляющей способности дуги, так как колебания ее длины и напряжения (особенно значительные при ручной сварке) не приводят к значительным изменениям сварочного  [c.187]

Перфорированная камера снижала уровень скоростей в области возникновения первичного очага возгорания, а ее цилиндрический участок (/ц= 3d ) позволил снивелировать негативное воздействие прецессии и добиться достаточно стабильного запуска и устойчивого горения.  [c.317]

Ограниченность на борту запаса сжатого воздуха при использовании автономного источника (баллонная система) вызывает необходимость учета его расхода на всех режимах вихревого го-релочного устройства. Расход сжатого воздуха существенно меняется при переходе с режима запуска на режим устойчивого горения (рис. 7.12).  [c.322]

Исследования, проведенные в термобарокамере, позволяли имитировать климатические условия до высоты Н= 16,0 км. С учетом того, что при высотных условиях температура сжатого воздуха за компрессором при адиабатном сжатии и степенях повышения давления л > 10 выше 300 К, в опытах температура сжатого воздуха на входе в воспламенитель поддерживалась постоянной и равной 300 К. Температура топлива изменялась от исходной Т= 298 К до атмосферной на соответствующей высоте. Пределы изменения температуры составляли 218 < < 298 К. В опытах температура понижалась на 5 К и запуск повторялся. Запуск регистрировали визуально по факелу прюдуктов сгорания и приборами по скачку давления и температуры. После запуска воспламенителя фиксировалась стабильность его работы без срывов в течении 30 с. Время запуска не превышало заданных норм и практически составляло 1 с. Во всем диапазоне изменения параметров окружающей среды и температуры топлива на входе воспламенитель работал без срывов и низкочастотных пульсаций. С уменьшением температуры отмечалось повышение давления топлива, при котором происходил надежный запуск с Р = 0,35 МПа при Т= 298 К до Р = 0,5 МПа при Т= 218 К, что очевидно обусловлено повышением мелкости распыла, вызванной увеличением перепада давления на форсунке. Проведенные испытания позволяют сделать следующие выводы доказана возможность организации рабочего процесса вихревого воспламенителя на вязком топливе при значительном снижении его температуры на входе воспламенитель КС вихревого типа подтвердил работоспособность при продувке в барокамере на режимах, соответствующих высоте полета до 16 км опыты показали высокую устойчивость горения, надежный запуск при достаточно низких отрицательных температурах, что позволяет рекомендовать вихревые горелки к внедрению как устройства запуска КС ГТД, работающих на газообразном топливе и используемых в качестве силовых установок нефтегазоперекачиваюших станций в условиях Крайнего Севера.  [c.330]


Однако в процессе сварки на перемещающуюся по металлу дугу д ствуют факторы, нарушающие ее устойчивое горение, такие, как jjgjMeHeHHe длины дуги, которое зависит от квалификации сварщика, j giie TBo сборки, перенос капель жидкого металла в сварочную ван-цу, изменение величины сварочного тока при колебаниях напряже-сети, изменение. скорости сварки, магнитное дутье дуги (отклонение дуги под действием электромагнитных полей и ферромагнитных масс) и другие факторы.  [c.55]

Требования к источникам питания для дуговой сварки. Для обес-зчения устойчивости горения дуги источники питания для дуговой арки должны удовлетворять следующим требованиям иметь напряжение холостого хода, т. е.. напряжение на зажимах точника тока при разомкнутой сварочной цепи, достаточное для гкого возбуждения дуги и устойчивого ее горения, но не превы-ть норм техники безопасности, т. е. не более 80—90 В обладать достаточной мощностью для выполнения сварочных абот  [c.55]

На рис. 29 изображены крутопадающая 1 и жесткая 2 характеристики источников питания и возрастающая вольт-амперная характеристика дуги, соответствующая III области ВАХ. Точка А пересечения характеривтик дуги и источника — точка устойчивого горения дуги, которой соответствует рабочий ток /р и напряжение U , U — на 1альная длина дуги для устойчивого горения.  [c.58]

Сварочные генераторы. Это специальные генераторы постоянного тока, внешняя характеристика которых позволяет получать устойчивое горение дуги, что достигается изменением магнитного потока генератора в зависимости от сварочного тока. Сварочный генератор постоянного тока состоит из статора с магнитными полюсами и якоря с обмоткой и коллекторами. При работе генератора якорь вращается в магнитном поле, создаваемом полюсами статора. Обмотка якоря пересекает магнитные линии полюсов генератора, и поэтому в витках обмотки возникает переменный ток, который с помощью коллектора преобразуется в постоянный. -Вращение якоря сварочного генератора обеспечивается в сварочных преобразователях электродвигателем, а в сварочных агрегатах — двигателем внутреннего сгорания. К коллектору прижаты угольные щетки, через которые постоянный ток подводится к клеммам. К этим клеммам присоединяют сварочные провода, идущие к электрододержа-телю и изделию.  [c.61]

Так как условием устойчивого горения дуги при сварке плавящимся электродом в защитных газах является высокая плотность сварочного тока, то применяют электродную проволоку малого диаметра (обычно < 3=0,8- 2,5 мм), что приводит к необходимости применения бо.льших скоростей подачи электродной проволоки.  [c.85]

Электроды группы Р осуществляют защиту зоны сварки шлаками на основе ТЮг, полевого шпата (NaoO-АЬОз- eSiOa), магнезита Mg Os, который, разлагаясь, дает большой объем СО2, но, кроме того, защитная атмосфера пополняется органическими компонентами. Электроды этой группы обладают высокими технологическими свойствами — обеспечивают высокую устойчивость горения дуги, хорошее формирование шва и отделяемость шлаковой корки, возможность сварки в любом пространственном положении шва. Кроме того, рутиловые электроды малотоксичны и обеспечивают высокие механические свойства у наплавленного металла.  [c.395]

Автоматические сварочные головки целесообразно применять в кр пносерийном и массовом производстве оболочковых констру кций, когда в процессе выполнения сварочных операций не требуется передвижения головки. Недостатком автоматических головок с автоматическим регулированием длины ду ги является то, что при изменении напряжения питающего источник тока может значительно (до 15 %) отклониться от заданного режима величина сварочного тока. Для получения устойчивого горения ду ги на данных установках мощность источника сварочного тока обычно не должна превышать 15 кВА. Автоматические головки с постоянной скоростью подачи проволоки при изменении напряжения в сети, питающей сварочный трансформатор, сохраняют более постоянную величину сварочного тока, но напряжение при этом может значительно изменяеться. Однако схема обслуживания этих голо-  [c.26]

Источники питания для дуговой сварки. Источники питания для РДС и АДСФ должны иметь падающую или иологук внешнюю характеристику (рис. 2.9, 6) — зависимость напряжения на выходных клеммах ИП от тока в сварочной цепи / Уд = / (/ев)- Режим устойчивого горения дуги определяется точкой С пересечения ВАХ н и f (/о в) точка А — режим холостого хода ИП -= 60 Ч-  [c.53]


Смотреть страницы где упоминается термин Устойчивость горения : [c.56]    [c.63]    [c.127]    [c.120]    [c.142]    [c.32]    [c.316]    [c.316]    [c.98]    [c.252]    [c.59]    [c.244]    [c.272]    [c.233]   
Смотреть главы в:

Сжигание газа на электростанциях и в промышленности Изд.2  -> Устойчивость горения



ПОИСК



Горение



© 2025 Mash-xxl.info Реклама на сайте