Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Благородные газы

В ионных газовых лазерах используются переходы между энергетическими уровнями ионов благородных газов (ксенон, аргон, неон, криптон), а также фосфора, серы и хрома. Типичный представитель этой группы — аргоновый лазер, который по конструкции похож на гелий-неоновый лазер. Газоразрядная трубка наполнена аргоном при давлении порядка десятков паскалей. Мощность лазеров этой группы выше, чем лазеров на атомных переходах.  [c.122]


Абсолютные значения выхода продуктов деления из топлива зависят от степени разрушения их сердечников и оболочек. Приведенные значения характеризуют соотношение между абсолютными величинами выходов. Из них следует, что основная активность продуктов деления в теплоносителе приходится на радиоактивные благородные газы, галогены (изотопы брома, иода) и теллур. Сорбция и удаление в фильтре приводят к перераспределению активности в группе летучих в сторону относительного возрастания газов.  [c.94]

Активная среда Хвз (рис. 34.5), Агд, Кга. Условия возбуждения возбуждение электронным пучком благородных газов при высоком давлении  [c.904]

ГЦК и ГПУ упаковки характерны для элементов с почти сферической симметрией межатомных связей кристаллов благородных газов, многих металлов. Так, ГЦК решетку имеют Ni, А1, u Pd, Ag, Au, Ne, Ar, Kr и др., ГПУ решетку —Mg, Be, Os и др. В некоторых случаях наблюдаются отклонения структуры от идеального типа (малые ромбоэдрические и тетрагональные искажения кубических кристаллов, отклонение с/а от идеального значения У 8/3 в гексагональных кристаллах ( d и Zn)).  [c.164]

Щелочные металлы в периодической системе Менделеева следуют за благородными газами литий следует за гелием, натрий-на неоном, калий-за аргоном и т. д.-и имеют на один электрон больше, чем соответствующие благородные газы. Атомы благородных газов характеризуются  [c.198]

Когда заполнение оболочки закончено, образуется устойчивая электронная конфигурация, соответствующая электронной конфигурации благородных газов. После этого начинает заполняться следующая оболочка, причем первым элементом при этом является щелочный металл.  [c.285]

В пределах каждого периода периодической системы элементов Менделеева при переходе от щелочного металла к благородному газу, относящемуся к тому же периоду, происходит постепенное заполнение внешней оболочки до тех пор, пока она не станет замкнутой. Поэтому с внешней оболочки могут быть удалены 2, 3 электрона и т.д. Энергия ионизации при этом растет. Это объясняется тем, что внешние электроны находятся у этих атомов в эффективном поле 2е, Ъе и т.д. Например, электроны внешней оболочки у лития, бериллия, бора и углерода находятся соответственно в эффективном поле заряда е, 1е, Ъе, 4е. Если же в пределах периода переходить от инертного газа к nie-лочному металлу того же периода, то можно говорить об увеличении числа недостающих до замкнутой оболочки электронов. С увеличением числа недостающих электронов энергия сродства к электрону убывает, что объясняется аналогично росту энергии ионизации при переходе к более тяжелым элементам в пределах одного и того же периода.  [c.303]


Инертные газы. На примере молекулы водорода видно, что объединение атомов в молекулу возможно лишь в том случае, если один из электронов одного атома может вступить в обмен с электроном другого атома, имеющим антипараллельный спин. Таким образом, вопрос сводится к тому, есть ли в атомах электроны со свободными спинами. Если все электроны в атоме объединены в пары с антипараллельными спинами, то ни один из электронов не может вступить в обмен с электроном другого атома с антипараллельным спином и, следовательно, невозможно образование молекулы. Примером являются благородные газы, в атомах которых все электроны упорядочены в пары с антипараллельными спинами, так что полный спин атома равен нулю. Поэтому атомы благородных газов не имеют ни одного электрона со свободным спином, который мог бы вступить в обмен с электроном другого атома благородного газа с антипараллельным спином. Этим и объясняется, почему благородные газы являются инертными.  [c.312]

Изменение ионизационного потенциала элементов в зависимости от атомного номера показано на рис. 1. Металлы занимают наиболее низкие уровни ионизационного потенциала (наименьшие из них у щелочных металлов), а благородные газы (Не, Ne, Аг, Кг, Хе) — наиболее высоки .  [c.11]

Межмолекулярная связь наблюдается у благородных газов, переведенных в твердое состояние при низких температурах (Ne, Аг, Кг, Хе). Низкие температуры плавления и кипения этих газов указывают на то, что силы притяжения между атомами у них малы и обусловлены поляризационными силами или силами Ван-дер-Ваальса.  [c.14]

Ионные кристаллы. Атомы, стоящие в периодической системе Д. И. Менделеева вблизи инертных газов, сравнительно легко могут принимать конфигурацию их электронных оболочек, отдавая или принимая электроны. Так, у атомов щелочных металлов, стоящих непосредственно за инертными газами, валентный электрон движется вне заполненной оболочки и связан с ядром слабо, вследствие чего энергия ионизации их низка (порядка 5 эВ). У галогенов, стоящих непосредственно перед инертными газами, недостает одного электрона для создания устойчивой электронной оболочки благородного газа. Поэтому они обладают высоким средством к дополнительному электрону (порядка 3 эВ).  [c.15]

В процессе углублений исследований ядерных процессов ученые сделали поразительные открытия. Оказывается, целесообразно не только делить атомное ядро урана и плутония, но также соединять тяжелые ядра водорода (дейтерий, тритий). При этом образуется благородный газ — гелий. При слиянии (синтезе) тяжелых ядер водорода высвобождается тепловая энергия, существенно превышающая энергию деления атомного ядра в расчете на 1 кг исходных атомов. Поэтому принципиально возможно создание реакторов на водородном топливе. Такие реакторы называются термоядерными. Над их разработкой сейчас работают ведущие ученые ряда стран. Большие работы этого направления проводятся и в СССР. Освещение перечисленных проблем, оценка перспектив использования новых источников энергии дана в 7 главе нашей книги.  [c.174]

Рис. I. Схема установки для отделения благородных газов путем дистилляции в ядерном реакторе с кипящей водой Рис. I. Схема установки для отделения благородных газов путем дистилляции в <a href="/info/12830">ядерном реакторе</a> с кипящей водой
Газообразные отходы содержат значительное количество водорода и кислорода, образующихся в результате радиолиза. Поэтому в первую очередь газ поступает в каталитический синтезатор, где происходит образование воды. Оставшийся газ сжимают и пропускают по трубопроводу для обеспечения распада короткоживущих изотопов. Затем на участке вымораживания из газа удаляют воду и углекислый газ. Для удаления 99,9,% благородных газов (они скапливаются на дне колонны) применяют метод дистилляции при криогенных температурах. Газ со дна периодически сливается. Дальнейшее повышение концен-  [c.90]

Благородные газы на длительное ш хранение  [c.90]

Рис. 2. Схема установки для отделения благородных газов путем селективной адсорбции в пароводяном реакторе атомной электростанции Рис. 2. Схема установки для отделения благородных газов путем <a href="/info/38548">селективной адсорбции</a> в пароводяном <a href="/info/114832">реакторе атомной</a> электростанции

Интерес к уникальной способности адсорбировать благородные газы при низкой температуре не постоянен. По мере изменения конструкции установок меняется необходимость в тщательной их очистке. Сейчас меньше внимания уделяется удалению криптона, однако со временем ситуация может измениться.  [c.91]

Скорость диффузии оказалась наибольшей для благородных газов,- s, I, Те и Вг диффундируют медленнее. Скорость диф-  [c.139]

Экспериментальные исследования подтверждают, что в случае аварийной потери теплоносителя надо ожидать полного выделения благородных газов, частичного — галогенов и малого — твердых веществ. Благородные газы, типичными представителя-  [c.117]

В ионных газовых лазерах используются переходы между энергетическими уровнями ионов в основном благородных газов Хе, Аг, Кг, Ne, а также фосфора (Р), серы (S) и хлора (С1). Ионные ОКГ работают как в непрерывном, так и в импульсном режиме.  [c.40]

В лазерах второй группы диссоциация происходит при электрическом разряде в газе. Например, в смесях Ne—О2 и Аг— основным процессом образования возбужденных молекул кислорода является квазирезонансная передача энергии от метаста-бильных атомов благородных газов к молекулам Оа- Возбужденная таким образом молекула кислорода О а, будучи энергетически неустойчивой, диссоциирует на атомы кислорода. В случае смеси Ne—О 2 диссоциация непосредственно приводит к появлению одного из атомов, находящегося в возбужденном состоянии. В случае Аг—О а атом кислорода оказывается на метастабильном уровне, который имеет большое сечение столкновения с электронами, переводящими кислород на верхний уровень рабочего перехода. В этих смесях при давлениях Ne и 63 соответственно 0,35 и 0,014 мм рт. ст. и при давлениях Аг и O.j соответственно 1,3 и 0,036 мм рт. ст. генерируется длина волны к = 0,8446 мкм.  [c.67]

При малых энергиях электронов в тяжелых благородных газах взаимодействие электронов с атомами сильно ослабляется в связи с эффектом Рамзауэра. Это объясняется волновым характером поведения электрона в процессе его упругого взаимодействия. При определенном соотношении между длиной волны де Бройля  [c.41]

Опыт показывает, что для благородных газов, а также для Нт, N2, О2, СО2. СО и воздуха наолюдаотс отличное согласие между измеренными на опыте показателями преломления п и вычисленными по формуле п - Vk (табл. 1.1).  [c.54]

При обсуждении спектра водорода упоминалось, что в нем наряду с дискретными спектральными линиями, составляющими серии, наблюдается ряд полос, которые при исследовании приборами с достаточной разрешающей способностью расчленяются на ряд тесно расположенных друг около друга линий, образуя так называемый многолинейчатый, или полосатый, спектр. Подобной особенностью отличаются и спектры других газов, молекулы которых состоят из двух или нескольких атомов. Наоборот, для одноатомных газов (благородные газы, пары металлов) характерны только линейчатые атомные спектры. Правда, при значительном давлении пары металлов (например Hg, 2п и др.), равно как и благородные газы, также излучают полосатые спектры, но, как показывают разнообразные исследования, при этих условиях в парах образуются нестойкие соединения типа Hg2, Пег, HgH, Сзо и т. д., т. е. молекулы, с существованием которых и связано излучение полосатых спектров.  [c.744]

Детальное изучение радиоактиЕности привело Резерфорда в 1902 г. к открытию одного из изотопов радиоактивного газа радона (Rn), относящегося к группе благородных газов. Радон возникает в результате -а-распада радия. Радон замечателен тем, что его активность А t) заметно убывает со временем t. Через  [c.103]

Первый опыт по обнаружению взаимодействия нейтрона с электронами был поставлен в 1947 г. Ферми. В качестве вещества для исследования был выбран благородный газ ксенон, электроны которого замыкают оболочку и, следовательно, не создают результирующего магнитного поля. Ксенон облучался тепловыми нейтронами, которые выводились из тепловой колонны реактора в виде хорошо сколлимированного пучка.  [c.265]

Активная среда Агр, Ar I, КгР и т. д. Условия возбуждения возбуждение электронным пучком смеси благородных газов и галогенидов при высоком давлении также поперечный разряд при атмосферном давлении  [c.904]

Активная среда ХеО.КгО. Условия возбуокдения возбуждение электронным пучком смеси благородных газов и О2 при высоком давлении  [c.904]

Добавление одного электрона к замкнутой оболочке благородного газа приводит к образованию электронной конфигурации щелочного ме-тлла (литий, натрий, калий и т.д.). К этой группе в периодической системе элементов принадлежит и атом водорода, у которого электронная конфигурация состоит из одного электрона. Щелочные металлы легко теряют этот дополнительный электрон и превращаются в отрицательные однократно заряженные ионы Li , Na , К и т. д. Удаление одного электрона из замкнутой оболочки благородного газа приводит к образованию электронной конфигурации галогенов (фтор, хлор, бром, иод и т.д.). Галогены стремятся присоединить себе электрон и превратиться в однократно заряженный положительный ион F С Вг+, 1 . ...  [c.303]

Ван-дер-ваальсовы силы слабые (меньше кулонов-ских), короткодействующие, центральные. Типичными представителями веществ являются кристаллы благородных газов и вследствие того, что силы связи малы, эти кристаллы существуют при очень низких температурах. Силы Ван-дер-Ваальса типичны для некоторых анизотропных кристаллов, образующихся из элементов IV—VII групп (см. рис. 3, б) по правилу 8—ЛА. В них между атомными слоями (рядами, молекулами) действуют силы Ван-дер-Ваальса, а между атомами внутри слоев (рядов, молекул) ковалентные связи.  [c.10]

В настоящем издании справочника приведены основные физические характеристики металлов атомная масса, атомный радиус, число электронов в атоме (атомный номер) и их строение по сравнению со строением благородных газов (гелия — is , неона—[He]2s 2p , аргона — [Ме]3з 3/) криптона— [Ar]Зii °45 4p ксенона— [Kr]4d 5s25pe р . дона [Xe]4/ 5d 6s 6p ), электроотрицательность, ионизационный потенциал, плотность, температуры плавления и кипения. Дополнительно приведены краткие сведения о ресурсах металлов, точности и достоверности определения свойств материалов, сверхиластичностн и электропластичности металлов.  [c.6]


Данные но радиационно-химическим выходам опубликованы Боком [15]. Величина С(полимеризация) при облучении рентгеновскими лучами (50 кэв) для этилена равна 29, пропилена — 20, 1-бутена — 20, 2-бутена — 10, 1,3-бутадиена — 38. Интересно отметить, что в некоторых случаях добавка к олефипам благородных газов существенно повышает степень полимеризации [191]. Изучение процесса образования радикалов позволило установить, что основными радикалами в облученном этилене и пропилене являются метильный и аллильный [257].  [c.17]

Радон в форме изoтoпa Rп — это благородный газ, который образуется при радиоактивном распаде урана. Радон — радиоактивный элемент, являющийся источником а-излу-чения. Изотоп обладает периодом  [c.322]

Рис. 3. Схема установки для удаления благородных газов на заводе восстановления топливных элементов в штате Айдахо Рис. 3. Схема установки для удаления благородных газов на заводе восстановления <a href="/info/36178">топливных элементов</a> в штате Айдахо
Теория показывала, что открытые резонаторы необходимо изготовлять с огромной точностью, а рабочим веществом должны быть сверхчистые искусственные кристаллы. Оптики умели делать и то, и другое. И вот в 1960 г. у Меймана заработал первый ОКГ на рубине. Через полгода было объявлено о создании генератора непрерывного действия, использующего смесь благородных газов.  [c.413]

Химическое изнашивание происходит в результате коррозии — химического воздействия рабочих сред на материал деталей арматуры. В результате образуются химические соединения с низкими механическими свойствами, которые разрушаются под действием силовых нагрузок или вымываются рабочей средой. В конденсате и питательной воде АЭС могут быть растворены соли и газообразные вещества кислород воздуха, углекислота, азот, аммиак, водород, радиолитический кислород, радиоактивные благородные газы (РБГ — ксенон, криптон, аргон) и др. Однако коррозию металла оборудования вызывают лишь растворы солей, кислород и углекислота. Для удаления солей питательную воду обессоливают, а для удаления коррозионно-активных газов воду деаэрируют химически или термически. Основным методом является термическая деаэрация, заключающаяся в нагреве воды до температуры кипения. Несмотря на обессоливание и деаэрацию, в воде остается некоторое количество веществ, которые вызывают коррозию металлов, в результате чего образуются окислы, оседающие на стенках оборудования, в том числе и на арматуре. В первом контуре окислы, проходя активную зону реактора, приобретают радиоактивные свойства. Вода проявляет активное коррозионное действие уже через два часа пребывания стали в воде на поверхности металла можно обнаружить следы коррозии.  [c.264]

Очистка теплоносителя от газообразных продуктов радиационно-термического необратимого разложения теплоносителя и радиоактивных благородных газов (РБГ) осуществляется непрерывной продувкой парогазовой смеси конденсаторов главного контура через специальный холодильник (с целью отделения паров N204 путем конденсации) и адсорбер для улавливания окислов азота и направления их в фильтры по улавливанию  [c.34]

Очистка теплоносителя от загрязняющих его веществ, которые составляют с ним гомогенную систему, является в данном случае наиболее специфической и сложной задачей. В настоящий момент нет возможности представить достаточно полно вид химических соединений радиоактивных элементов, которые при рабочих параметрах газожидкостного цикла реактора составляют гомогенную систему с теплоносителем. В газовой фазе это могут быть соединения йода, элементарный йод, благородные газы, окислы и соединения стронция, бария, хрома, молибдена, цезия, углерода и рутения. В пробах жидкой фазы теплоносителя гамма-спектрофотометрическим методом обнаружены незначительные количества железа, кобальта и рутения. Происхождение последних может быть обусловлено двумя причинами высокодисперсным состоянием твердой фазы соединений этих элементов и наличием соответствующих растворимых в Ыг04 соединений. Для разделения газовых гомогенных сред на основе N204 можно использовать процессы физической и химической адсорбции и изотопного обмена их также можно разделять на полунепроницаемых мембранах и молекулярных ситах.  [c.66]

Нет сомнения, что в щелочных металлах валентные электроны можно отличить от электронов, принадлежащих к внутренним оболочкам металлических ионов. Большой атомный объем таких металлов объясняется тем, что расположение электронов в катионах подобно их расположению в атомах благородных газов, в связи с чем электроны проводимости не проникают в заметной степени во внутренние электронные оболочки. На это особенно отчетливо указывает малая величина энергии ионизации атомов пара щелочных металлов. Квазисвободный электронный газ в щелочном металле занимает в связи с этим сравнительно большой объем между металлическими ионами, что сказывается на атомном объеме жидких и твердых щелочных металлов. Для жидких сплавов щелочных металлов нельзя ожидать высоких значений теплоты смешения, так как ионы в чистых металлах и в сплавах находятся на больших взаимных расстояниях и энергия их взаимодействия по-видимому невелика.  [c.9]


Смотреть страницы где упоминается термин Благородные газы : [c.45]    [c.181]    [c.655]    [c.811]    [c.283]    [c.286]    [c.19]    [c.353]    [c.92]    [c.140]    [c.364]    [c.35]   
Техническая энциклопедия Том20 (1933) -- [ c.0 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.0 , c.28 ]



ПОИСК



Газ благородный

Лазер азотный благородных газов

Лазеры на ионах благородных газов с синхронизацией Экспериментальное исследование активной синхронизации мод лазера иа АИГШ

Экспериментальные и теоретические данные для атомов благородных газов



© 2025 Mash-xxl.info Реклама на сайте