Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория возмущений интегрируемых систем

ТЕОРИЯ ВОЗМУЩЕНИИ ИНТЕГРИРУЕМЫХ СИСТЕМ  [c.152]

Глава 5. Теория возмущений интегрируемых систем.....152  [c.303]

Мы увидим, что во многих невозмущенных интегрируемых задачах движение оказывается условно периодическим. При исследовании движения как в невозмущенной, так и особенно в возмущенной задаче полезны специальные симплектические координаты переменные действие — угол . В заключение мы докажем теорему, обосновывающую теорию возмущений одночастотных систем, и докажем адиабатическую инвариантность переменной действия в таких системах,  [c.238]


Хотя работы Пуанкаре и Биркгофа продемонстрировали чрезвычайную сложность топологии фазового пространства, вопрос об эргодичности движения, т. е. о том, покрывает ли траектория всю энергетически доступную область фазового пространства или же она ограничена какими-то интегралами движения, оставался до недавнего времени без ответа. Теорема Колмогорова [229], доказанная при различных ограничениях Арнольдом [10] и Мозером [308] (теорема KAM), утверждает, что при возмущении интегрируемых систем инвариантные поверхности сохраняются для большинства начальных условий. Хотя движение вблизи сепаратрисы каждого резонанса и является стохастическим, оно ограничено соседними инвариантными поверхностями и не является эргодическим. В гл. 3 мы рассмотрим теорию KAM и связанные с ней топологические результаты, которые служат обоснованием многих методов, описанных в этой книге.  [c.15]

В последнее время появились некоторые новые результаты, которые серьезно активизировали исследования в этой области. Прежде всего надо назвать чисто аналитические результаты. Они содержатся в теореме, сформулированной Колмогоровым в 1954 г. и доказанной Арнольдом и независимо Мозером в 1963 г., поэтому обычно эту теорему кратко называют КАМ-теоремой ). Речь идет о результате теории возмущений, относящемся к следующей задаче. Рассмотрим интегрируемую систему, описываемую гамильтонианом Нд (/). Она характеризуется набором торов, покрытых эргодическими траекториями. Попытаемся ответить на вопрос, что произойдет, если вводится малое возмущение, т. е. если теперь рассматривается система с модифицированным гамильтонианом  [c.363]

При исследовании устойчивости механических систем, описываемых каноническими уравнениями движения (в частности с гамильтонианом, периоди-134 чески зависящим от времени), существенную роль играет орбитальная устойчивость Применение предложенного А. Н. Колмогоровым метода теории возмущений позволило получить ряд результатов относительно устойчивости и неустойчивости консервативных систем, близких к интегрируемым для бесконечного промежутка времени. При этом выяснилось существенное отличие систем с числом степеней свободы ге 3 от систем с одной или двумя степенями свободы. Так называемые условно-периодические движения, соответствующие интегрируемым системам с п степенями свободы, образуют п-мерные инвариантные многообразия типа тора. Методом Колмогорова доказывается грубость таких торов — они мало видоизменяются, т. е. устойчивы при достаточно малых возмущениях. При и = 1 или п = 2 в фазовом пространстве 2п измерений устойчивые торы лежат в многообразиях 2п — 1 измерений, которые выделяются требованием постоянства энергии, как соосные торы (и = 2) или концентрические кривые п = 1). Поэтому не только траектории, первоначально лежащие на инвариантных торах, но и траектории, находящиеся между ними, остаются между этими торами. В этом случае существование торов гарантирует устойчивость системы. При га >> 3 гг-мерные торы вложены в пространство 2п — 1 измерений, которое они делить уже не могут, т. е. щели между торами сообщаются друг с другом. Поэтому траектория, начинающаяся между торами, несмотря на их устойчивость по отношению к возмущениям, может, извиваясь между торами, уйти на любое расстояние от них, т,. е. оказаться неустойчивой. Примеры, иллюстрирующие эти общие положения, приведены в докладе  [c.134]


Введение. Математические биллиарды — один из важных модельных объектов рассмотрения в теории динамических систем и ее приложениях [1-5]. В последнее время начались исследования биллиардов с медленно меняющимися параметрами (см., например, [6]). В данной работе рассматривается динамика в медленно вращающихся прямоугольном и эллиптическом биллиардах с медленно изменяющимися границами. Рассматриваемые системы близки к интегрируемым, и для их изучения могут быть применены методы теории возмущений. В этих системах имеют место резонансные явления захват в резонанс и рассеяние на резонансе. При исследовании этих явлений ниже используются методы, развитые в теории гладких гамильтоновых систем с быстрыми и медленными переменными [7]. Результаты настоящей работы свидетельствуют, что эти методы могут успешно применяться и для исследования систем с ударами, какими являются биллиарды.  [c.171]

Если неустойчивые периодические решения невозмущенной задачи не вырождены, то они не исчезнут при добавлении возмущения ([1, гл. III]), и через их траектории снова пройдут пары сепаратрис ([1, гл. VII]). Однако возмущенные сепаратрисы не обязательно совпадут. Это явление, обнаруженное впервые Пуанкаре [13, 19], называется расщеплением сепаратрис. Оно коренным образом рознит поведение траекторий невозмущенной и полной систем. Из существования расщепленных сепаратрис вытекает, например, расходимость рядов многочисленных вариантов теории возмущений. Таким образом, расщепление сепаратрис также является динамическим эффектом, препятствующим интегрируемости уравнений динамики.  [c.99]

Книга содержит обзорные и оригинальные статьи ведущих российских ученых по основным разделам нелинейной механики. Излагаются вопросы составления и анализа уравнений движения механических систем с различными связями (в том числе и с односторонними с учетом ударных явлений), в различных силовых полях (в том числе при наличии сил сухого трения). Обсуждаются вопросы корректности тех или иных моделей механики, вопросы интегрируемости и детерминированного хаоса, вопросы устойчивости и теории возмущений. Исследуются разнообразные конкретные механические системы задача трех тел с учетом их несферичности или упругости, задачи динамики космических аппаратов, задачи динамики твердых тел в различных силовых полях (в том числе с учетом ударных взаимодействий и сил сухого трения), задача динамики твердого тела со струнным приводом, орбитальные тросовые системы и т. д.  [c.3]

Лагранж, Жозеф Луи (25.1.1736-10.4.1813) — великий французский математик, механик, астроном. В своем знаменитом трактате Аналитическая механика (в 2-х томах), наряду с общим формализмом динамики, привел уравнения движения твердого тела в произвольном потенциальном силовом поле, используя связанную с телом систему координат, проекции кинетического момента и направляющие косинусы (том II). Там же указан случай интегрируемости, характеризующийся осевой симметрией, который был доведен им до квадратур. Следуя своему принципу избегать чертежей, Лагранж не приводит геометрического изучения движения, а рисунки поведения апекса, вошедшие ранее почти во все учебники по механике, впервые появились в работе Пуассона (1815 г), который рассмотрел эту задачу как совершенно новую. Пуассон, тем не менее, систематизировал обозначения, усложняющие понимание трактатов Даламбера, Эйлера и Лагранжа и рассмотрел различные частные случаи движения (случай Лагранжа в некоторых учебниках называют случаем Лагранжа-Пуассона). В свою очередь Лагранж упростил решение для случая Эйлера и дал прямое доказательство существования вещественных корней уравнения третьей степени, определяющих положение главных осей. Отметим также вклад Лагранжа в теорию возмущений, позволивший Якоби рассмотреть задачу о возмущении волчка Эйлера и получить систему соответствующих оскулирующих переменных.  [c.21]

Выход в свет перевода нашей книги на русский язык доставляет нам огромное удовлетворение. Современная теория динамических систем в том виде, как она представлена в этой книге, имеет несколько основных источников, и среди них вклад русской школы, в особенности в период с начала пятидесятых до середины семидесятых годов, занимает выдающееся место. В начале этого периода А. Н. Колмогоров выдвинул программу изучения классических динамических систем с использованием методов современного анализа и теории вероятностей. Эта программа, а также первые результаты ее реализации коротко, но весьма убедительно изложены в пленарном докладе Колмогорова на Международном Математическом Конгрессе 1954 года в Амстердаме. Вклад самого Колмогорова в развитие теории динамических систем трудно переоценить теория возмущений вполне интегрируемых гамильтоновых систем и введение энтропии являются, пожалуй, самыми важными достижениями, относящимися соответственно к устойчивому и хаотическому поведению в динамике.  [c.10]


Таким образом, мы имеем два совершенно разных подхода к построению решений точно интегрируемых нелинейных динамических систем, а именно метод в классической области, основанный на представлении типа Лакса и техника обычной теории возмущений в классической и квантовой областях.  [c.7]

Здесь — гамильтониан взаимодействия, в котором вместо обобщенных координат и импульсов подставлены соответствующие им динамические переменные, зависящие от момента времени ta с траекториями, описываемыми свободной частью гамильтониана фо аргументы ф/ отвечают этим переменным при гамильтониане в момент времени 1. Таким образом, с помощью теории возмущений устанавливаются явные формулы, связывающие динамические величины, описываемые гамильтонианами и (На квантовом уровне подобное описание динамических систем отвечает представлению взаимодействия.) При этом, что наиболее существенно, для некоторых из них в точно интегрируемых системах ряды теории возмущений Я [ф(/5 д)] является конечными полиномами по X, что при-  [c.178]

Конечномерные алгебры Ли обладают набором конечномерных представлений, для которых многократное применение понижающих операторов слева направо (или повышающих справа налево) приводит к аннигиляции базисных состояний. Таким образом, в этом случае ряды теории возмущений обрываются на соответствующем порядке и выражение (2.7) дает эквивалентную форму записи решений точно интегрируемых динамических систем типа (III. 2.8), построенных в гл. III и IV.  [c.181]

Другим важным приложением является движение заряженной частицы в магнитном и электрическом полях. Прежде всего было установлено, что магнитный момент является адиабатическим инвариантом, связанным с ларморовским вращением заряженной частицы [7]. В дальнейшем были рассмотрены адиабатические инварианты и для других степеней свободы частицы. Эта задача стимулировала развитие асимптотических разложений и техники усреднения, а также исследования Чирикова 167 ], в которых он изучал переход. между регулярным и стохастическим движением и установил первый критерий такого перехода (критерий перекрытия резонансов). В дальнейшем был проведен учет влияния высокочастотного поля вследствие его резонанса с ларморовским вращением. В результате был найден предел для высокочастотного нагрева, связанный с существованием инвариантных кривых. Родственная задача о движении частицы в намагниченной плазме под действием волны, иллюстрирующая многие из вышеупомянутых особенностей движения, используется в качестве примера для резонансной теории возмущений (гл. 2) и для определения перехода от адиабатического поведения к стохастическому (гл. 4). Другим интересным приложением теории является движение частиц в ускорителях. Именно в этой области были проведены некоторые ранние исследования поведения многомерных нелинейных систем. Уравнения Гамильтона могут быть использованы также и для описания других типов траекторий, таких, как магнитные линии или лучи в геометрической оптике. В случае аксиально симметричной тороидальной геометрии гамильтониан, описывающий магнитные линии, оказывается интегрируемым. К настоящему времени уже проведен ряд исследований по разрушению тороидальных магнитных поверхностей возмущениями, возникающими как от внешних токов, так и от самосогласованных токов удерживаемой плазмы. Подобные приложения используются ниже в качестве примеров, а также кратко обсуждаются в дополнении А.  [c.17]

В этой схеме неявно предполагается, что исследуемая система является интегрируемой. Как мы видели в гл. 1, обычно это не так, и большинство многомерных динамических систем не интегрируемы. В таких системах хаотические траектории, связанные с резонансами между различными степенями свободы, занимают конечный фазовый объем, а их распределение среди регулярных траекторий оказывается всюду плотным. Теория возмущений не в состоянии описать всю сложность такого хаотического движения, что формально выражается в расходимости соответствующих рядов.  [c.81]

Обычно доказательства неинтегрируемости и хаотического поведения гамильтоновых систем основаны на построении трансверсальных гомоклинических траекторий к гиперболическим положениям равновесия или периодическим траекториям. Как правило, доказать существование таких траекторий удается только для систем, близких к интегрируемым, когда можно применить один из методов теории возмущений, например основанный на интеграле Пуанкаре-Мельникова 21]. Если в системе нет малого параметра, то методы теории возмущений неприменимы. Тогда приходится использовать непертурбационные методы, одним из которых является вариационный метод. В настоящей работе подход, основанный на вариационных принципах механики, проиллюстрирован на простейшем случае автономных гамильтоновых систем с двумя степенями свободы. По поводу других классов систем см., например, [1, 2, 6, 9, 10, 12, 16, 25-28] и библиографии в этих работах.  [c.147]

Более подробное изложение теории возмущений читатель найдет в книге Математические аспекты классической и небесной механики В. И. Арнольда, А. И. Нейштадта и Б. В. Козлова, составляющий третий том знциклопедической серии Современная математика. Ф даментальные направления (М. ВИНИТИ, 1985). Четвертый том этой же серии содержит обзор современного состояния симплектической геометрии (Б. И. Арнольд, А. Б. Ги-венталь), статью А. А. Кириллова о геометрическом квантовании и обзор С. П. Новикова с соавторами о развитии теории интегрируемых систем, лить затронутом в настоящей книге.  [c.7]

НОВЫЙ качественный подход к анализу проблемы п тел. Позднее в гамильтоновой динамике зародились два различных направления ( ) исследование динамической сложности, возникающей в этой задаче из-за определенной гиперболичности (Алексеев, Конли), и Ш) анализ интегрируемых систем и их возмущений, который привел к КАМ-теории. Хотя и гиперболическая, и интегрируемая модели были известны еще со времен Пуанкаре, потребовался глубокий анализ Колмогорова, для того чтобы осознать, что многие качественные особенности (весьма специальных) интегрируемых систем в определенной степени сохраняются под действием возмущений, а также возникают в типичных ситуациях (например, вблизи неподвижной эллиптической точки). На развитие обоих этих направлений повлиял вопрос об устойчивости солнечной системы, который изучался в рамках гиперболического подхода в терминах устойчивости системы п тел и в рамках КАМ-теории посредством анализа возмущений, например, (интегрируемой) системы центральных сил без учета взаимодействий между планетами. В работе Конли и Цендера была установлена взаимосвязь топологических и вариационных методов, ставшая краеугольным камнем современной глобальной симплектической геометрии. Возрождение анализа вполне интегрируемых систем началось с работы Гарднера, Грина, Крускала и Миуры и открытия П. Лаксом новых методов построения интегрируемых систем. Это привело к быстрому увеличению числа новых интересных примеров конечномерных интегрируемых систем, а также к построению теории бесконечномерных гамильтоновых систем. Применение этой теории к изучению нелинейных дифференциальных уравнений в частных производных стало крупным достижением впервые в ситуациях, когда асимптотическое поведение уже не может быть названо тривиальным, появились средства для законченного качественного анализа.  [c.24]


В настоящем параграфе методы теории возмущений применяются для построения явных выражений для рещений точно интегрируемых динамических систем. При этом важно подчеркнуть, что речь идет не о каких-либо приближенных результатах, а о точных выражениях, возникающих в результате суммирования рядов теории возмущений, которое для рассматриваемых систем удается довести до конца. Тем самым, преобразование Беклунда, осуществляющее связь нелинейной и соответствующей линеаризованной систем, приобретает явную формулировку. Им является каноническое преобразование, связывающее рещения некоторой нелинейной динамической системы с рещениями системы, возникающей из исходной при нулевом значении постоянной взаимодействия . (В простейшем случае в роли нелинейной и линеаризованной указанным образом систем выступают уравнения Лиувилля и Лапласа соответственно.)  [c.177]

Это глубокое противоречие между существованием интегрируемых систем, с одной стороны, и эргодических, с другой, было симптомом некоторой фундаментальной нерешенной проблемы классической механики. Определенный вклад в разрешение этого противоречия внес Пуанкаре он продемонстрировал, что в окрестности неустойчивых неподвижных точек движение имеет чрезвычайно сложный характер. Это был первый намек на то, что регулярные силы могут порождать стохастическое движение в нелинейных колебательных системах. Впоследствии ]Зиркгоф [29] показал, что при рациональном отношении частот для двух степеней свободы (резонанс) всегда существуют как устойчивые, так и неустойчивые неподвижные точки. Резонансы все более высокого порядка и более мелкого масштаба последовательно изменяют топологию фазовых траекторий и приводят к образованию цепочки островов . Было установлено, что ряды теории возмущений не описывают такие резонансы.  [c.14]

Рассмотрение теории возмущений мы начнем с краткого описания некоторых ее методов, используя простые примеры динамических систем и исследуя движение непосредственно по определяющим его дифференциальным уравнениям. Даже для нелинейного осциллятора с одной степенью свободы (интегрируемая система) разложение только амплитуды колебаний в степенной ряд приводит к появлению неограниченно растущих во времени секулярных членов и расходимости. Решая совместные уравнения для амплитуды и частоты колебаний, Линдштедт [278 J и Пуанкаре [337 ] преодолели секулярность и получили сходящиеся ряды. Их техника описана в п. 2.1а и представлена в общей канонической форме в п. 2.2а. Этот материал составляет основу дальнейшего изложения теории возмущений.  [c.82]

Существует обширный класс динамических систем, траектории которых обладают замечательной устойчивостью, не заполняют эргодическим образом поверхность уровня энергии Н = onst и остаются все время в некоторой области фазового пространства. Это случай систем, близких к интегрируемым системам, и систем, к которым применима теория возмущений небесной механики. К этому классу принадлежит задача трех тел, а также исследование быстрых вращений тяжелого твердого тела, движения свободной точки по геодезической на выпуклых поверхностях, системы с адиабатическими инвариантами и т.д.  [c.82]

Задачу о влиянии малых гамильтоновых возмущений на интегрируемую гамильтонову систему Пуанкаре назвал осно ной задачей динамики. Эта задача имеет много приложений, именно к ней относятся исторически первые формулировки принципа усреднения и первые результаты теории возмущений. Формальная сторона теории здесь в принципе такая же, как для общих негамильтоновых возмущений. Одиако характер эволюции под влиянием гамильтоновых возмущений совсем иной. Соответственно, для обоснования рецептов теории возмущений используются существенно другие методы, чем в негамильтоновом случае.  [c.181]

Ожидаемая качественная картина поведения близких к интегрируемым систем, опирающаяся на формулировку теорем Пуанкаре-Биргофа, КАМ-теоремы и теоремы о закручивании (twist-theorem), приведены в главе 6 книги [33]. Она подтверждается многими численными экспериментами независимо от формальных деталей модели. Это имеет место и в рассматриваемой задаче. Типичная картина хаотизации и разрушения ядра вихревой области приведена на рис. 10 в виде сечений Пуанкаре для е = 0.1, = 1. Эволюция аналогичных картин в зависимости от частоты V представлена в [10], где также имеется последовательность сечений Пуанкаре для оптимальной частоты V = 0.25 и набора амплитуд возмущений е в интервале [О, 0.6], по мере роста которых сжимается ядро регулярных траекторий, размываются окружающие его отдельные вихри и расширяется охваченная хаотическим перемешиванием оболочка, из которой все интенсивнее осуществляется вынос частиц в проточное течение.  [c.492]


Смотреть страницы где упоминается термин Теория возмущений интегрируемых систем : [c.36]    [c.57]    [c.304]    [c.62]   
Смотреть главы в:

Динамические системы-3  -> Теория возмущений интегрируемых систем



ПОИСК



Возмущение

Интегрируемые системы

Теория возмущений

Теория систем



© 2025 Mash-xxl.info Реклама на сайте