Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точный вид краевых функций

Точный вид краевых функций  [c.406]

ТОЧНЫЙ ВИД КРАЕВЫХ ФУНКЦИЙ  [c.409]

Таким образом, приближенное решение краевой задачи (7.9.21), (7.9.22) можно записать в виде совокупности функций (7.9.23), (7.9.24), аппроксимирующих точное решение при малых и больших значениях т) соответственно.  [c.430]

В уравнении (4) матрицы G, G зависят от и типа краевых условий. Элементы матрицы преобразования для составной конструкции Л , связывающей перемещения и усилия на ее краях I и II, являются экспоненциально-тригонометрическими функциями. Амплитуда этих функций экспоненциально возрастает с ростом длины составляющих конструкцию оболочек и достигает величины С ехр где — безразмерная суммарная длина оболочек, С — постоянная, зависящая от геометрии оболочек и не зависящая от их длины. С ростом матрица становится плохо обусловленной и ее точное обращение становится невозможным даже с помощью ЭВМ. Действительно, так как матрица является матрицей перехода от края I к краю II, то обратная ей матрица (Л ) является матрицей перехода о т края II к краю I и по условиям взаимности ее элементы совпадают с элементами матрицы с точностью до некоторых коэффициентов, не зависящих от произведение (Л ) дает единичную матрицу, элементы которой 1 и О являются при больших I малыми разностями больших чисел порядка С ехр 2 . Это наглядно видно, например в случае оболочек, для которых решение дифференциальных уравнений выражается через функции А. Н. Крылова, и матрица содержит в качестве ядра матрицу функций А. Н. Крылова, обладающую свойством ( ) = Y (— I). Однако можно показать, что при решении системы (4) независимо от вида краевых условий достаточно обращения только одного блока второго порядка матрицы Л , которое может быть выполнено точно (при той же длине конструкции). Например, если по краям составной конструкции из  [c.78]


В дальнейшем под термином аналитические методы будем понимать методы, позволяющие получить решение краевой задачи в виде аналитической функции (скалярной или векторной), удовлетворяющей точно или приближенно уравнениям и граничным условиям этой задачи. Если метод позволяет получить решение, которое точно удовлетворяет как уравнениям краевой задачи во всей области, в которой она решается, так и граничным условиям на всей границе этой области (или на той части границы, на которой они заданы), за исключением, возможно, конечного числа точек, то метод является точным для данной задачи или класса задач. Например, метод Колосова-Мусхелишвили 65] является точным методом решения плоских статических задач линейной теории упругости для односвязных областей, которые могут быть конформно отображены на единичный круг с помощью дробно-рациональной функции. Для многих классов задач точные аналитические решения неизвестны. Это, например, плоские статические задачи линейной упругости для многосвязных областей или статические задачи нелинейной теории упругости при конечных деформациях. Только отдельные задачи этих классов имеют точное аналитическое решение. Существуют методы, позволяющие свести решение таких задач к последовательному решению более простых задач, для каждой из которых точное аналитическое решение может быть найдено. Например, при решении задач линейной упругости для много-  [c.45]

Реализация рекуррентных соотношений в задаче II приведет, как было сказано, к построению собственной функции v(<7), вернее, к определению постоянной С. Воспользуемся этим обстоятельством для получения сходящегося представления решения [172]. Рассмотрим теперь краевую задачу, когда точное решение щ в смещениях и напряжениях известно ). Реализуя рекуррентные соотношения (2.19), придем к соответствующему значению постоянной (обозначим ее через С]). Тогда краевая задача для смещения 2 = и — СН1/С1 приведет, как легко видеть, к сходящемуся процессу.  [c.566]

То, что введение функций напряжений Ф дает возможность тождественно удовлетворить уравнениям равновесия и тем самым свести задачу к решению одного уравнения и выполнению соответствующих конкретной задаче краевых условий, позволило получить ряд точных решений путем подбора функций Ф. Пусть и qy постоянны. Тогда уравнению (19.11) можно попытаться удовлетворить, задав функцию Ф в виде полинома по степеням хну, например, вида  [c.445]


Авторы справочника [124] отмечают, что к настоящему времени насчитывается свыше 50 приближенных методов решения уравнения (23.5), которые можно разделить на три группы аппроксимации, конечных разностей и интегральные. Методы аппроксимации основаны на замене непрерывной неоднородности участками с постоянными параметрами упругости или с законами г), для которых известны точные решения. Наиболее употребителен при таком подходе способ, основанный на идее метода начальных параметров. Метод конечных разностей может применяться, очевидно, в любой трактовке с использованием различных приемов уточнения решения. В ряде работ задача сводится к интегральному уравнению, которое решается методом последовательных приближений. При использовании ЭЦВМ эффективное решение можно получить методом Рунге—Кутта, сведя предварительно краевую задачу (23.3), (23.5) к задаче Коши, При граничных условиях (23.3) легко построить решение методом Бубнова—Галеркина, приняв функцию X в виде  [c.115]

Для математической формулировки задачи в виде дифференциальных уравнений теплопроводности и соответствующих краевых условий [например, в виде выражений (2.36)-(2.41)] определение температурного состояния тела связано с непосредственным решением этих уравнений. Возможности точных аналитических методов в этом случае ограничены, как правило, решением линейных задач теплопроводности, когда теплофизические характеристики материала тела или его отдельных частей не зависят от температуры, а граничные условия выражаются линейной комбинацией температуры и ее градиента на поверхности. Если в теле действуют внутренние источники теплоты, мощность которых является функцией температуры, то эта функция также должна быть линейной.  [c.43]

Перечисленные требования к базисным функциям имеют следующий смысл. Первое требование обеспечивает и облегчает решение двухточечной краевой задачи, второе — гарантирует осуществимость параметризованного ПД (2.47) с учетом динамики робота, третье и четвертое — означают возможность экономного и вместе с тем сколь угодно точного представления ПД в виде (2.47) и, наконец, пятое обеспечивает простоту технической реализации искомого ПД. Заметим, что пренебрежение любым из этих требований может привести к грубым ошибкам или к неосуществимости параметризованного ПД.  [c.53]

Поэтому для решения краевой задачи надо к нагрузочному напряженно-деформированному состоянию присоединить дополнительное напряженно-деформированное состояние, снимающее невязки. Построение последних сводится к рассмотренной выше задаче об эффекте приложения краевых воздействий. Отсюда вытекает, что дополнительное напряженно-деформированное состояние будет также определяться решениями вида (П.15.1), в которых надо, вообще говоря, число р, отождествлять с числом е, входящим в (П. 16.5). Исключение представляет случай, когда в (П. 16.6) функция г точно или приближенно обращается в нуль, т. е. когда край у близок или совпадает с линией уровня функции изменяемости внешней поверхностной нагрузки.  [c.504]

Определим напряженное состояние упругой полуплоскости с разрезом, перпендикулярным к границе. Особое значение в механике разрушения имеют задачи о краевой и полубесконечной трещинах в полуплоскости, поскольку с их помощью можно оценить влияние свободной границы тела на распределение напряжений, когда трещина выходит на край области или расположена вблизи него. В последних случаях для некоторых видов нагрузок (нагрузка является степенной функцией расстояния от края полуплоскости) удается получить точные значения коэффициентов интенсивности напряжений [91, 405, 406], однако в общем случае таких решений не существует.  [c.116]

Как правило, под такими методами подразумевают прежде всего какие-либо способы представления решений некоторого класса дифференциальных задач с начальными условиями или краевыми условиями в виде математических объектов с простой структурой в виде аналитической формулы, в виде некоторого интеграла от известной функции — квадра,туры, достаточно быстро сходящегося или носящего асимптотический характер ряда с последовательно вычисляемыми коэффициентами. В первых двух случаях, пользуясь стандартными методами численного анализа, можно при любом фиксированном наборе входных параметров получить решение с заданной степенью точности за очень малое время ЭВМ, иногда это удается сделать и в третьем случае. Часто в первых двух случаях или в случае сходящегося ряда говорят о построенных точных решениях. В последнее время под термином получено точное решение понимают и ситуацию, когда задача сведена к интегрированию системы небольшого количества обыкновенных дифференциальных уравнений при условии отсутствия особенностей (конечный промежуток интегрирования, достаточно гладкие коэффициенты и т. п.). Такого типа задачи можно практически с произвольной точностью (снова при фиксированном наборе входных параметров) решить на ЭВМ с помощью стандартных численных методов за сравнительно короткое время.  [c.14]


Метод граничных элементов (МГЭ) — это метод решения краевых задач для дифференциальных уравнений в частных производных, появившийся в результате сочетания идей теории потенциала с методами современной теории аппроксимации. МГЭ, с точки зрения теории аппроксимации, имеет много общих черт с широко известным методом конечных элементов, но отличается от него существенным преимуществом дискретизация осуществляется, как правило, не внутри области, в которой ищется решение, а на ее границе. Такое упрощение достигается путем точного удовлетворения исходным дифференциальным уравнениям с помощью представлений решения в виде, характерном для теории потенциала. Указанные представления могут быть использованы в рамках МГЭ лишь в случае, когда известны в явном виде (точно или приближенно) фундаментальные решения (или функции Грина) для рассматриваемых дифференциальных уравнений 1 исследованы граничные свойства соответствующих потенциалов. Путем предельного перехода на границу в формулах представления решения получаются граничные интегральные уравнения (ГИУ), которые являются основным объектом аппроксимации Б МГЭ. Этим объясняется еще одно (более раннее) название МГЭ — метод граничных интегральных уравнений. Заметим, что возникающие в теории упругости и в других разделах механики деформируемого твердого тела ГИУ часто являются сингулярными интегральными уравнениями [114, 107, 84], методы аппроксимации которых далеко не тривиальны.  [c.3]

Основная идея метода Бубнова — Галеркина состоит в том, что приближенное решение однородной краевой задачи ищется в виде линейной суперпозиции конечного числа некоторых базисных функций, удовлетворяющих граничным условиям. Коэффициенты разложения определяются из интегральных условий, выражающих ортогональность невязки к каждой базисной функции. Таким образом, задача сводится к решению системы алгебраических уравнений для коэффициентов разложения. В качестве базиса обычно выбираются первые функции какой-либо полной системы. Успех в применении метода определяется выбором базисных функций и числом этих функций, входящих в разложение. При удачном выборе базиса достаточно точные результаты получаются уже при аппроксимации решения сравнительно небольшим числом функций.  [c.28]

Недостаточность краевых условий (6)-(8) приводит к необходимости частичного предугадывания внутреннего состояния материала слоя на основе опытных данных, соображений симметрии и Т.Д. Обычно в таких случаях используются предположения о виде касательных напряжений г (гипотеза Прандтля, линейность г по какой-либо переменной [1 5]) или о характере функций смещений (гипотезы плоских или параболических сечений [1]), или оба вида предположений [4]. При этом задача становится переопределенной и не имеет точного решения. Однако приближенный характер уравнений и задачи в целом делают такого сорта противоречивость не очень существенной -требуется лишь, чтобы принятые допущения не приводили к явному несоответствию с каким-либо уравнением системы (1)-(5).  [c.154]

Решения в рядах. Так же, как в случае балок, репгения в рядах вида (5.19) для пластин содержат точные явные решения для случая нагрузок, которые можно представить в виде степенных функций от X и у, а также решения для случая, когда имеется только краевая нагрузка. В качестве примера первого случая, когда в выражениях (5.19) нагрузка tj берется пропорциональной х , х у или у , получим явное решение для пластины с равномерно распределенной по верхней поверхности нагрузкой когда берется в виде функции, пропорциональной соответствующим пятым степеням х и у, то получаем решения для линейно изменяющейся нагрузки и т. д. Однако, в то время как каждое такое решение будет иметь определенный физический смысл, соответствующие им краевые условия, как правило, уже не будут  [c.312]

Общие результаты теории ползучести нео дно родно-стар еющих тел, полученные в 1,2, справедливы для произвольных ядер вида К — К (Ь, т) - или соответственно К = КН - р (а ), г -Ь р (а ), х]. Однако для приложений этой теории существенное значение имеет выбор ядер такого типа, чтобы они, с одной стороны, достаточно точно воспроизводили основные свойства стареющих материалов в наиболее важных случаях их нагружения, а с другой стороны, приводили бы к постановке краевых задач, допускающих эффективное рещение. Поэтому ниже остановимся лищь на тех неразностных ядрах специального типа, которые позволяют наиболее просто применить теорию ползучести неодно-родно-стареющих тел к решению прикладных задач. Разумеется, выбор ядер для стареющих материалов эквивалентен выбору вида функций для модулей мгновенных деформаций (х) и О (т) и для мер ползучести С 1, т) и со ( , т), ибо, например.  [c.60]

Известен ряд точных в явном виде решений трехмерной задачи теории упрзггости, которые описывают интересные для практики задачи о пластина , за исключением деталей, относящихся к граничным условиям они, согласно принципу Сен-Ве-нана, обычно имеют существенное Значение только вблизи краев, где, как это обсуждается ниже, могут быть применеды уточняющие поправки. Так же, как и в случае балок, большая часть, если не все, этих решений, так же как несколько обобщенных точных решений в явном виде для случая отсутствия на- грузок на поверхностях пластины (они могут использоваться как при удовлетворении краевых условий, так и для других важных целей), представляют собой решения в рядах по функциям нагружений на верхней и нижней поверхностйх, которые аналогичны решениям (3.28) и (3.29) для балок. Эти решения в рядах сходятся it точным решениям для произвольного типа гладких функций нагружения и обеспечивают, вообще говоря, наиболее важные уточнения результатов, получаемых по классической теории пластин при самых общих условиях нагружения. Поэтому логично начать изучение толстых пластин именно с таких решений в рядах.  [c.304]


При прогибах, равных нулю, и действии только объемных сил уравнение (6.31к) принимает вид V

плоского напряженного состояния теории упругости. Очевидно, что любые решения этого уравнения (в том числе в виде степенных рядов или гиперболо-тригонометрических функций, рассматривавшихся в 3.3) можно прибавить к решениям уравнения (6.31к) и использовать для удовлетворения двух краевых условий, налагаемых на мембранные силы или перемещения и и V срединной поверхности по всем четырем краям криволинейной панели, либо эквивалентных условий непрерывности деформаций. Точно так же решения уравнения У и = 0 можно прибавить к решениям уравнения (6.31з) и использовать для удовлетворения условий, задаваемых на поперечные силы или моменты, либо на поперечные смещения или углы наклона.  [c.457]

Функции Рк. х) и Qk x t) будем считать базисными (они заданы), а с помощью коэффициентов ak t) bk t)) можно удовлетворить уравнению (например, вида (2)) и дополнительным начальным или краевым условиям. Вид ряда (4) является стандарт ным при применении метода разделения переменных для линейных уравнений. Однако для нелинейных задач процедура получения коэффициентов ak t) существенно услож няется. Как правило, системы обыкновенных дифференциальных уравнений для ak t) оказываются зацепленными и нелинейными (например, когда Рк х) = sin А ж(со8 А ж) и (4) является рядом Фурье), рекуррентное точное определение ak t) становится невоз можным и необходимо соответствующие системы обыкновенных уравнений каким-то образом обрезать. Нахождение коэффициентов ak t) даже после обрезания нелинейной системы является достаточно трудоемкой операцией, особенно если требуется опреде лить много коэффициентов.  [c.19]


Смотреть страницы где упоминается термин Точный вид краевых функций : [c.417]    [c.419]    [c.81]    [c.68]    [c.121]    [c.69]   
Смотреть главы в:

Рассеяние света малыми частицами  -> Точный вид краевых функций



ПОИСК



I краевые



© 2025 Mash-xxl.info Реклама на сайте