Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пределы торможения

Улучшение характеристик противоточной системы с помощью принципа механического торможения изучалось автором совместно с сотрудниками не только при каскадно расположенных вставках, рассмотренных выше. Представляется, что наиболее эффективным осуществлением этого принципа является применение винтовых сетчатых вставок (одно- или многозаходных). Экспериментальное изучение таких вставок проводилось методами меченых частиц, р-просвечивания и отсечек [Л. 21, 84]. В первом случае экспериментальная установка состояла из стенда торможенной газовзвеси и электронного блока для регистрации заряженных частиц. Стенд торможенной газовзвеси включал в себя прозрачную цилиндрическую камеру из органического стекла высотой 0,8 и диаметром 0,34 м, в которую вставлялись сменные винтовые сетчатые вставки. Источником излучения являлась частица алюмосиликата di = = 4,35 мм, меченная Со активностью 0,5 мг-экв. Для проверки методики вначале были проведены опыты по определению времени свободного падения одиночной меченой частицы, которое сопоставлялось с теоретически рассчитанной величиной. Время находилось по (2-45) при у = 0, Vo.a=VT,a=0. Многократное определение времени, в течение которого меченая частица проходила контрольный участок камеры, совпадало с расчетным с погрешностью 4%, что лежит в пределах точности эксперимента и служит частной проверкой  [c.95]


В отливках в результате неравномерного затвердевания тонких и толстых частей и торможения усадки формой при охлаждении возникают внутренние напряжения. Эти напряжения тем выше, чем меньше податливость формы и стержней. Если величина внутренних напряжений превзойдет предел прочности литейного сплава в данном участке отливки, то в теле ее образуются горячие или холодные трещины. Если литейный сплав имеет достаточную прочность и пластичность и способен противостоять действию возникающих напряжений, искажается геометрическая форма отливки.  [c.126]

В работах [232, 234, 356] показано, что для некоторых материалов характеристики вязкости разрушения при циклическом нагружении могут существенно отличаться от характеристик статической трещиностойкости. Циклическое деформирование металла у вершины трещины приводит к нестабильному (скачкообразному) ее развитию при КИН, меньших статической вязкости разрушения Ки. В настоящее время феноменология такого явления достаточно хорошо разработана и описана в работах [29, 197, 232, 234, 267, 356]. Тем не менее физическая природа скачков усталостной трещины изучена недостаточно. Попытаемся дать физическую интерпретацию этого явления. Выше (см. подраздел 2.3.2) была представлена модель, описывающая зарождение усталостного разрушения в масштабе зерна. Разрушение представлялось как многостадийный процесс, включающий зарождение микротрещин по границам и в теле фрагментированной субструктуры, возникающей при циклическом деформировании, стабильный рост микротрещин за счет стока дислокаций в их вершины, образование разрушения в пределах зерна при нестабильном росте микротрещин. Ограничение мае-штаба разрушения при нестабильном росте микротрещин размером зерна возникает в случае их торможения границами зерен или стенками фрагментированной структуры, т. е. при = Oi < 5с(ху), где X/ — накопленная деформация к моменту страгивания микротрещин. Если сгтах 5с(ху), то разрушение может распространяться в масштабе, большем чем размер зерна.  [c.222]

Горение, протекающее за фронтом очень сильной ударной волны, начинается на столь высоком тепловом уровне, что может вызвать лишь относительно небольшой прирост температуры торможения. Поэтому в пределе  [c.222]

В пограничном слое в зависимости от положения линии тока вдоль нее может происходить или ускорение, или торможение течения, сопровождаемое диссипацией механической энергии. В связи с этим вдоль произвольной линии тока, проходящей хотя бы частично в пределах пограничного слоя, перепад —р расходуется не только на изменение кинетической энергии, но и на преодоление сил трения. В частности, формулу (8.118) можно рассматривать как энергетическое уравнение для той линии тока, вдоль которой кинетическая энергия не изменяется и весь перепад давления расходуется на преодоление сил трения.  [c.356]


Скачки уплотнения возникают при торможении сверхзвуковых потоков в газе какими-либо преградами. Возмущения сжатия, вызываемые отдельными точками преграды, распространяясь со скоростью звука, в сверхзвуковом потоке не могут выходить за пределы соответствующих конических поверхностей, образованных волнами Маха (см. рис. 4.2). Поэтому в ограниченном пространстве перед  [c.107]

Рассмотрим картину течения перед затупленным телом с центральной иглой. Если длина такой иглы не превышает расстояния до криволинейного отошедшего скачка уплотнения (рис. 6.1.1,а), то ее влияние распространяется лишь на течение за этим скачком и оказывается несущественным. Выдвижение острия иглы 9 за пределы криволинейного скачка уплотнения (рис. 6.1.1,6) приводит к перестройке структуры возмущенного потока, которая характеризуется новой системой скачков уплотнения. Это обусловлено отрывом потока от поверхности иглы, который обычно происходит вблизи основания конического острия (излома). Такой отрыв вызывается большим положительным градиентом давления в пограничном слое на поверхности иглы, обусловленным торможением потока перед телом. В результате отрыва возникает застойная зона 1 с возвратным течением. Оторвавшийся пограничный слой смешивается в зоне 2 с внешним возмущенным течением и присоединяется к обтекаемой затупленной поверхности в области 3. Разделяющие линии тока 8 в зоне смешения образуют поверхность, близкую к конической, пересекающуюся с головной частью в точках Л и 5. В месте присоединения сверхзвуковой поток претерпевает поворот, который  [c.383]

Таким образом, увеличение расхода пара или газа через калориметр выгодно, однако пределом здесь должны являться определенные максимальные скорости движения вещества через калориметр. Если скорости слишком велики, то будет сказываться различие между температурой потока и температурой торможения (см, 3.2). Практически выбирают скорости движения не более 10—15 м/с, а расходы вешества (1- -5) 10 кг/с.  [c.182]

Колебания скорости входного звена при некоторых условиях выходят за пределы периодического изменения скорости установившегося режима. Возникают непериодические колебания скорости, характерные для переходных процессов. Переходным процессом называют переход регулируемого объекта из одного стационарного состояния в другое. В машинах такие процессы возникают при внезапных скачках или сбросе нагрузки, изменении количества подводимой энергии, при пуске, торможении и реверсировании хода машины.  [c.390]

Полученные важные выводы установлены с помощью одномерной гидравлической теории, причем очевидно, что в рамках такой теории эти выводы верны и тогда, когда камера сгорания вообще не цилиндрическая. Подчеркнем, что снижение гидравлических потерь и выгодные условия подвода тепла в камере сгорания соответствуют процессу, в котором в пределе скорость газа относительно камеры равна нулю. В связи с этим, а также в связи с необходимостью организовать сгорание впрыскиваемого топлива в движущемся воздухе требуется поступающий в камеру сгорания воздух предварительно затормозить. Предварительное торможение воздуха можно осуществить частично или полностью с помощью диффузора, расположенного перед камерой сгорания. В сверхзвуковом полете для этого нужно применять специальные диффузоры для торможения сверхзвуковой скорости (см. выше стр. 96).  [c.100]

Разрушению образцов из пластичных пластмасс может предшествовать значительное нарастание деформаций без увеличения усилия. Это состояние материала регистрируется торможением стрелки на силоизмерителе, а соответствующую нагрузку принимают за условную разрушающую Условный предел  [c.161]

Обеспечение необходимой степени защиты металла от коррозии (2) или необходимого значения коэффициента торможения коррозии (у) при такой концентрации ингибитора, при которой его применение будет экономически оправданным и целесообразным. В зависимости от области применения и стоимости ингибитора оптимальные концентрации и защитные эффекты могут изменяться в широких пределах. Так, например, ингибитор с V = 2 (2 = 50%) по эффективности будет удовлетворительным применительно к системам водоснабжения и окажется неподходящим для кислотного травления (у > 8, 2 > 87%).  [c.56]


Притупление вершины трещины. Для материалов, имеющих физический предел выносливости, характерным является присутствие нераспространяющихся поверхностных микротрещин в гладких деталях и на базе испытаний 10 циклов. Помимо основной причины торможения трещины, связанной с влиянием границ зерен, в этом случае присутствует также эффект, изменения конфигурации вершины трещины, а именно ее притупление. С увеличением радиуса вершины трещины уменьшается концентрация напряжений, что приводит к торможению трещины или полной ее остановке.  [c.32]

Эффект торможения развития усталостной трещины в результате упрочнения зоны материала, прилегающей к вершине трещины, можно проиллюстрировать результатами испытаний на усталость образцов из низкоуглеродистой феррито-перлитной стали. Исходная микротвердость, которую определяли на приборе Виккерса при нагрузке 1,0 Н и выдержке 30 с, составляла для феррита 1080, для перлита 2810 МПа. Испытания проводили на гладких образцах с диаметром рабочей части 5 мм, нагружение которых осуществляли по схеме чистого изгиба при вращении. Предел выносливости таких образцов на базе 10 циклов нагружения составил 190 МПа. После электрополирования образцов, прошедших 10 циклов нагружения при напряжении 190 МПа, на глубине 1—2 мкм были обнаружены усталостные трещины длиной (по поверхности образца) 0,1 мм и глубиной 20—25 мкм.  [c.34]

Для сопоставления можно привести результаты испытаний по той же методике медных образцов, предел выносливости которых при диаметре 5 мм на базе 2-10 циклов составил 90 МПа [30]. С помощью электрополирования поверхности образцов на глубину 1 мкм после 2-10 циклов нагружения при напряжении 90 МПа были обнаружены усталостные трещины, длина которых по поверхности образца составляла 50 мкм. Анализ микротвердости таких образцов показал, что увеличение микротвердости у вершины усталостной трещины несущественно отличается от увеличения микротвердости в деформированных зернах (на 17 и 15 % соответственно). Действительно, на выбранной базе испытаний торможения роста усталостной трещины в меди не происходит, и при дальнейшем увеличении числа циклов нагружения такая трещина развивается и приводит к разрушению образца.  [c.35]

Структура материала оказывает тем более заметное влияние на задержку роста усталостной трещины, чем меньше размер зерна и больше различие прочностных характеристик отдельных составляющих структуры. Формирование физического предела выносливости, например, происходит при достижении в материале под нагрузкой равновесия двух процессов I) образования и роста трещины в составляющих структуры, обладающих наименьшим сопротивлением усталости, и 2) торможения трещины в элементах структуры с наибольшим пределом выносливости.  [c.97]

Приведенные результаты позволяют заключить, что предел выносливости исследуемого материала определяется взаимосвязью процессов возникновения усталостной трещины в феррите и торможения ее в перлите. Для деталей из этого мате-  [c.98]

В волокнистых и слоистых композициях сдвиговой механизм торможения трещин, имеющий место в традиционных сплавах, дополняется торможением трещин самими волокнами на поверхности ослабленного сцепления матрицы с армирующими упрочни-телями. В этих композициях выбор компонентов обусловлен получением определенной (оптимальной) степени взаимодействия с целью согласования высокого предела прочности с повышенной вязкостью разрушения.  [c.6]

Рост пленки при диффузионно-кинетическом торможении выражается степенным законом /г" = /г,т, где — показатель степенного закона, находящийся в пределах от 1 до 2. При контроле скорости реакции процессами внутренней и внешней диффузии реагентов и окислителя наблюдаются сложные параболические зависимости толщины пленки от времени окисления при заданной температуре.  [c.14]

Комбинированные тормоза в течение всего времени работы механизма остаются разомкнутыми усилием электромагнитов, рассчитанных на постоянное включение. Торможение осуществляется с помощью педалей величина тормозного момента в них (как и в нормально открытых тормозах) пропорциональна усилию нажатия на педаль и может изменяться в весьма широких пределах. В кинематических схемах комбинированных тормозов предусматривается независимость действия управляемого привода и  [c.138]

На фиг. 109 приведены осциллограммы, записанные при испытаниях механизма передвижения, оборудованного управляемым тормозом. В процессе испытания характер приложения нагрузки к педали управления изменялся от очень плавного (фиг. 109, а) до весьма резкого (фиг. 109, б и в). На верхней прямой 1 каждой осциллограммы производилась отметка момента включения тока (точка Л) и выключения (точка Б) двигателя механизма. Кривая 2 характеризует изменение величины давления в трубопроводе около напорного цилиндра (отрезок кривой на участке А—Б при работающем двигателе соответствует периоду, в течение которого усилие на педали управления отсутствует). Кривая 3 характеризует изменение скорости (числа оборотов) тормозного шкива и кривая 4 — изменение величины давления колодки на тормозной шкив. Как видно из представленных осциллограмм, нарастание давления колодки на шкив (точка В) вызывает уменьшение скорости. Во всех случаях давление в системе в первый момент оказывается несколько большим, чем устанавливающееся впоследствии. Начало торможения отстает от момента приложения нагрузки к педали на время, потребное для выбирания зазора между колодкой и тормозным шкивом. Это время при испытаниях колебалось в пределах 0,04—1,6 сек и определялось характером  [c.167]


Теоретически можно оценить лишь порядок величины ojm- 1 рзй-нему пределу торможения относительного движения пара соответствует его нулевая относительная скорость. В этом случае для а имеем формулу (14.32), которой можно придать вид  [c.201]

Схемы диффузоров с внутренним сжатием показаны на рис. 2. 2 и 2.9, б. Внутренний канал рассматриваемых диффузоров имеет последовательно расположенные сужение и расширение, поэтому они иногда называются сужающимися—расширяюпдимися [2]. Наименьшее сечение канала принято называть горлом . Торможение сверхзвукового потока в данном случае происходит за плоскостью входа в диффузор. Внутри диффузора в идеальном случае на участке сужения образуется система первичных и отраженных косых скачков уплотнения, число которых может быть различным и определяется профилированием канала. В пределе торможение потока может осуществляться изэнтропически.  [c.62]

Во всех зарегистрированных до сих пор в эмульсии случаях распада т-мезона последнему приписывается положительный знак заряда. Когда в эмульсионной камере видны концы всех трех я-мезонов, знак заряда следует из того, что всегда при распаде встречаются два я+-мезона и один я -мезон когда я-мезо-ны выходят за пределы эмульсионной камеры, положительный знак заряда т-мезона следует из компланарности направлений разлета я-мезонов. Действительно, если бы т-мезон, распадающийся в эмульсионной камере, имел отрицательный знак заряда, то, подобно я - и я -мезонам, он должен был бы после торможения захватиться ядром на боровскую 7(-мезонную орбиту, перейти на уровень с малым квантовым числом (/(-орбита), находящийся вблизи или даже внутри ядра, и только после этого распасться. Однако при распаде в таком состоянии первоначаль-  [c.594]

Во всех зарегистрированных до сих пор в эмульсии случаях распада т-мезона последнему приписывается положительный знак заряда. Когда в эмульсионной камере видны концы всех трех я-мезонов, знак заряда следует, из того, что всегда при распаде встречаются два я +-мезона и один я -ме-зои когда я-мезоны выходят за пределы эмульсионной камеры, положительный знак заряда т-мезона следует из компланарности направлений разлета я-мезонов. Действительно, если бы т-мезон, распадающийся в эмульсионной камере, имел отрицательный знак заряда, то, подобно х - и я -мезонам, он должен был бы после торможения за-  [c.167]

Первая группа моделей 7-1(), 22 , объясняющая термогазодинамический процесс в пульсационном течении, основывается на том, что при втекании и торможении С1 руи в полузамкнутую емкость образуются резонансные колебания, под действием которых одна часть газа разогревается, а другая - охлаждается. При этом от нагретого газа теплота непрерывно отводится в окружающую среду через стенки полузамкнутой емкости. Расчеты параметров процесса выполняют по эмпирическим занисимостям и номограммам [9-11), которые дают удовлетворительную точность в пределах тех условий, для которых были получены экспериментальные результаты на средах воздух и азот, при тех же степенях расширения газа, геометрических характеристиках сопла и полузамкнутой емкости.  [c.176]

Заостренный конус. При экспериментальном исследовании сверхзвукового обтекания круглого заостренного конуса с проницаемой поверхностью ([37], 1968, № 2) фотографировалась картина течения газа, а также определялось распределение давления по поверхности конуса. Полуугол при его вершине был 6 = 0,197 числа Маха и Рейнольдса соответственно Моо = 2,9 и R oo = l/ /uao = 2,6-10 м отношение температур торможения внешнего и вдуваемого газов TalT j— 1. Параметр вдува (р1/)вд изменялся в пределах от 0 до 0,24.  [c.414]

Приведенные значения для Ртер и, вообще говоря, приемлемые значения для Рпроп при больших Т и, следовательно, при ТУТ 1, но при существенной разности Т — Т , показывают, что при малых скоростях полета (малые и большие Т ) применение прямоточного двигателя нецелесообразно, при больших же сверхзвуковых скоростях прямоточный двигатель может быть весьма эффективен. Однако нужно иметь в виду, что при возрастании числа Маха свыше М = 4 температуры торможения становятся очень большими. Статические температуры в потоке внутри двигателя можно сохранять в приемлемых пределах регулированием величины скорости потока газа внутри двигателя.  [c.140]

Германий применяется для изготовления выпрямителей переменного тока различной мощности, транзисторов разных типов. Из него изготовляются преобразователи Холла и другие, применяемые для измерения напряженности магнитного поля, токов и мощи сти, умножения двух величин в приборах вычислительной техники и т. д. Оптические свойства германия позволяют использовать его для фототранзисторов и фоторезисторов, оптических линз б большоГ светосилой (для инфракрасных лучей), оптических фильтров, модуляторов света и коротких радиоволн. Внутренний фотоэффект в германии наблюдается и при поглощении средних и быстрых электронов, а также при торможении элементарных частиц больших масс. Так, при поглощении а-частицы отмечается импульс тока продолжительностью около 0,5 МКС, соответствующий прохождению 10 электронов. Поэтому германий может быть использован и для изготовления счетчиков ядерных частиц. На рис. 8-18 приведена вольт-амперная характеристика мощного германиевого выпрямителя б воздушным охлаждением. Рабочий диапазон температур германиевых приборов от —60 до -f70 °С при повышении температуры до верхнего предела прямой ток, например у диодов, увеличивается почти в два раза, а обратный — в три раза. При охлаждении до —(50—60) °С прямой ток падает на 70—75 %.  [c.255]

Из сопроводительной документации следовало, что вертолетом Ми-8МТВ-1 в предыдущий день перед разрушением лопасти в полете было осуществлено 18 полетов со средней продолжительностью 20 мин. Это означает, что число полетов по результатам измерения шага усталостных бороздок составляет 7-10. Очевидна близость длителт.-ыости и кинетики роста сквозной усталостной трещины по результатам макроскопической оценки числа сформированных блоков усталостных линий и по результатам измерений шага усталостных бороздок. Следует подчеркнуть, что эти оценки занижены по отношению к полному периоду распространения сквозной трещины в пределах одного-двух полетов. При формировании блоков усталостных линий происходило частичное торможение трещины, что выражается в снижении шага усталостных бороздок. Поскольку при переходе от несквозной трещины к сквозной величина измеренного шага мала, снижение скорости роста трещины при формировании усталостных линий на этой стадии роста могло быть таким, что некоторый период времени трещина вообще не распространялась после возникавшей перегрузки. Поэтому оцененное число циклов не охватывает всей полноты информации и закономерности продвижения и частичной остановки трещины после кратковременных перегрузок.  [c.661]

Таким образом, величина К в выражении для У4 (48) в зависимости от характера протекания анодной реакции растворения металла и значений кинетических параметров изменяется в пределах от 3,3 до 11,0, а показатели степени в уравнениях (45) и (46), определяющих 71 и 72,— от /4 до Уа и от до /4 соответственно. Поэтому очевидно, что кинетический эффект (частные коэффициенты торможения 71 и 7з) может играть заметную роль лишь при низких концентрациях добавок, т. е. в области малых заполнений поверхности, когда токи обмена сильнее всего изменяются с ростом заполнения вследствие исключения наиболее активных центров, вытеснения катализатора и т. д. При дальнейшем повышении содержания ингибитора вклад кинетических коэффициентов торможения уменьшается, так как отношение токов обмена входит в степени, меньшие единицы. Так, например, если ток обмена по металлу в присутствии ингибитора уменьшается в 1000 раз по сравнению с исходным раствором, то величина 71 (показатель степени равен Уд) составит 10. Примерно то же можно сказать и о величине 72. Напротив, роль 74 с ростом поверхностной концентрации, которая при полярных или заряженных частицах почти линейно связана с Аф1, возрастает и уже при относительно малых значениях Дф] может в 10 раз и более превосходить величины 71 и 72. При наибольших заполнениях существенным становится вклад 73= (1 — 0) . Поэтому величину коэффициента торможения в довольно широком интервале концентраций ингибитора можно с достаточным приближением (пока действует предполагаемый механизм ингибирования) приравнять произведе-  [c.25]


К концу 1966 г. намного увеличилась протяженность линий, оборудованных совершенными средствами автоматики и телемеханики. Если еще в 1958 г. устаревшие (жезловая и телефонная) системы сигнализации и связи использовались более чем на двух третях железнодорожной сети, то в 1966 г. они оставались лишь на 17% общей длины сети в пределах малодеятельных линий и ветвей, уступив место полуавтоматической блокировке, автоматической блокировке и диспетчерской централизации. С 1958 г. сначала на подмосковном участке Кунцево—Усово и затем на кольцевой линии Московского метрополитена и на 90-километровом участке Москва—Клин ведется отработка электронных систем автоматического управления локомотивами и моторвагонными секциями. В 1961 г. успешно прошла эксплуатационные испытания установка автоматического роспуска составов и торможения на станционных сортировочных горках и подгорочных путях с использованием радиолокационных и счетно-решающих устройств. Наконец, в последнее время готовится к вводу в опытную эксплуатацию система автоматического диспетчерского регулирования движения поездов, основанная на применении электронных вычислительных машин и имеющая назначением оптимальное решение задач регулирования при нарушениях установленного графика движения [16, 23].  [c.214]

Программа первого полета пилотируемого космического корабля предусматривала выведение его на эллиптическую орбиту, облет земного гаара в пределах одного витка, переход на траекторию снижения и приземление. Параметры орбиты (перигей, время обращения) были выбраны с учетом возможности сравнительно быстрого спуска на Землю в случае отказа тормозной двигательной установки за счет аэродинамических сил торможения, особенно ощутимых в области перигея. Запасы пищи и воды, нормальное действие корабельных систем жизнеобеспечения и емкость источников электроэнергии были рассчитаны на непрерывный полет корабля в течение десяти суток.  [c.441]

Справедливость такого предположения подтверждается исследованиями Форреста, изучавшего сопротивление усталости латуни с размером зерна от 0,018 до 0,330 мм. Результаты определения пределов выносливости образцов, различные размеры зерна в которых получали путем отжига после разных степеней пластического деформирования, показывают, что с увеличением размера зерна их сопротивление усталости уменьшается. Однако наиболее интересным результатом этих исследований является обнаружение во всех образцах с размером зерна меньше 0,04 мм нераспространяющихся микротрещин, расположенных вдоль полос скольжения длиной не больше размера зерна. Эффект торможения трещины границей зерна усиливается, если материал обладает заметной анизотропией свойств от зерна к зерну.  [c.39]

Первые попытки (1960—1961 гг.) получить теоретическое решение для определения параметров области существования нераспространяющихся усталостных трещин были основаны на феноменологическом подходе к рассмотрению причин образования таких трещин. В одной из работ проявление большинства факторов, приводящих к торможению развития усталостной трещины, сведено к увеличению сопротивления росту трещины от поверхности в глубь сечения образца. Полученное решение позволяет найти наименьший эффективный коэффициент концентрации напряжений, при котором возможно образование нераспространяющихся усталостных трещин. Р. Петерсоном по существу впервые с феноменологических позиций получены расчетные зависимости пределов выносливости по трещинообра-зованию и разрушению от радиуса надреза различной глубины и зависимость между теоретическим и эффективным коэффициентом концентрации напряжений для плоских образцов с концентраторами напряжений различной интенсивности.  [c.42]

В отличие от осевого нагружения или изгиба, когда распространение усталостной трещины лроисходит по сечению образца или детали, имеющему наименьщий момент сопротивления, при кручении трещина распространяется по сечениям с большими площадями, имеющими соответственно и большие моменты сопротивления. Второе отличие состоит в том, что при кручении соприкасающиеся поверхности образовавшейся усталостной трещины могут до некоторой степени передавать знакопеременную нагрузку, тогда как при осевом нагружении или изгибе поверхность трещины полностью воспринимает сжимающую нагрузку и совсем не может воспринимать растягивающую. Отмеченные особенности приводят к тому, что напряжения у вершины усталостной трещины при кручении не возрастают так быстро с ростом трещины, как при других видах нагружения. В связи с этим нераспространяющиеся усталостные трещины при кручении наблюдаются при значительно меньших теоретических коэффициентах концентрации напряжений, а напряжения, необходимые для распространения трещин, становятся близкими к пределу выносливости гладкого образца. Известны случаи, когда нераспространяющиеся трещины значительных размеров (до 1 мм) наблюдали при кручении гладких образцов. Можно предположить, что в этом случае значительно большую роль в торможении трещин играют структурная неоднородность и анизотропия свойств материалов.  [c.82]

Были проведены специальные исследования возникновения и развития усталостных трещин в галтелях коленчатых валов из стали 20Г, которые испытывали на усталость при кручении. Диаметр шеек вала составлял 50 мм, а радиус галтели, которую упрочняли ППД путем обкатки роликом, был равен 2 мм. Предел выносливости этих валов без упрочнения, определенный при испытаниях по методу вверх — вниз , составил 110 МПа. Упрочнение галтелей повысило предел выносливости по разрушению этих валов примерно до 160 МПа. Анализ усталостных трещин, возникших в галтелях исследованных валов, прошедших базу испытаний 5-10 циклов нагружения при напряжениях, близких к пределам выносливости по разрушению, показал следующее. Для неупрочиенного вала характерно возникновение большого количества нераспространяющихся усталостных тре-шин, максимальная глубина которых составляет 7 мм. Типичное строение таких трещин в радиальном сечении, расположенном вблизи галтельного перехода неупрочиенного коленчатого вала, показано на рис. 65, а. После ППД уменьшается число и максимальная глубина нераспространяющихся усталостных трещин, возникающих в галтелях вала, типичное строение которых показано на рис. 65, б. Полученные результаты подтверждают вывод о том, что и при кручении эффект ППД проявляется в основном в торможении развития усталостных трещин.  [c.157]


Смотреть страницы где упоминается термин Пределы торможения : [c.21]    [c.98]    [c.66]    [c.230]    [c.433]    [c.422]    [c.202]    [c.427]    [c.185]    [c.29]    [c.158]    [c.153]   
Смотреть главы в:

Автомобильный справочник Том 1  -> Пределы торможения



ПОИСК



5.206— 211 — Торможени

Торможение



© 2025 Mash-xxl.info Реклама на сайте