Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модуляторы света

В описанной схеме электрооптической модуляции света внешнее электрическое поле было направлено перпендикулярно направлению распространения света и поэтому данный модулятор называется поперечным амплитудным модулятором света. Модулирующее поле может быть направлено также и по направлению распространения света. Соответствующая схема модуляции называется продольной.  [c.288]

Параметры электрооптических модуляторов света, выпускаемых промышленностью [128, 228]  [c.73]


Интегрально-оптические элементы. Частотные фильтры, модуляторы света, направленные ответвители, дефлекторы и т.п. позволяют осуществлять разл. действия над распространяющимися в волноводе волнами их канализацию, модуляцию и отклонение, излучение в пространство генерацию (см. Гетеролазер) и т. п.  [c.152]

Рис. 2. Амплитудная характеристика модулятора света а — работа на нелинейном участке при Г, = О б — работа на линейном участке при Го = л/2. Рис. 2. <a href="/info/8929">Амплитудная характеристика</a> модулятора света а — работа на нелинейном участке при Г, = О б — работа на линейном участке при Го = л/2.
Рис. 3. Модулятор света с компенсацией естественной анизотропии за счёт применения полуволновой пластины Рис. 3. Модулятор света с компенсацией естественной анизотропии за счёт применения полуволновой пластины
Ряс. 7. Магнитооптический модулятор света 1 — магнитооптический элемент г — катушка, создающая магнитное поле 3 — поляризаторы.  [c.181]

Другой вид амплитудного оптич. Н. э. (рис. 2) представляет собой систему из двух электрооптич. СВЧ-модуляторов света I и 2, помещённых между скрещен-выми поляризаторами 3 и 4. Если с помощью фазовращателя 6 сдвинуть фазу напряжения в модуляторе 2 на л/2 относительно 1, а расстояние между модуляторами Ь взять равным Л/4 (Л — длина волны модулирующего сигнала), то свет, идущий слева, через эту систему не пройдёт, т. к. к моменту прихода света во второй модулятор напряжение на нём сдвинется на л  [c.251]

Ввод информации в световой луч осуществляется с помощью транспаранта или пространств, модуляторов света. Оптич. луч, модулированный в каждой точке своего поперечного сечения, позволяет обрабатывать параллельно сразу большой массив данных, представленный в форме двумерной оптич. картинки. Оптич. устройства дают возможность очень просто и быстро реализовать ряд важных интегральных оптаций над двумерными сигналами, таких как преобразования Фурье, Гильберта и Лапласа, нахождение свёртки и корреляции двух ф-ций и нек-рые др. Так, обычная оп-тнч. линза позволяет мгновенно получить фурье-спектр оптич. изображения, падающего на эту линзу. Вводя соответствующие фильтры в фокальную плоскость после линзы, можно значительно улучшить качество оптич. изображения или даже увидеть изображение невидимого фазового объекта.  [c.437]


К — компенсатор М — модулятор света.  [c.610]

Несмотря на сравнительно короткую историю, гидрированные полупроводники, и прежде всего пленки a-Si H и многослойные структуры (в том числе гетероструктуры) на их основе, уже вышли на рельсы достаточно широкого практического использования. Солнечные батареи, фотоприемники, координатно-чувствительные детекторы ионизирующих излучений, тонкопленочные полевые транзисторы, высокоскоростные пространственные модуляторы света, фоточувствительные слои в электрофотографии и лазерных принтерах, мишени видиконов, светодиоды -вот далеко не полный перечень приборных применений гидрированного кремния и родственных ему материалов. Использование гидрированных полупроводников в современной электронной технике расширяется с каждым годом. Наиболее многообещающим направлением эффективного использования этих материалов являются приборы регистрации и  [c.105]

ЭЛЕКТРООПТИЧЕСКИЕ МОДУЛЯТОРЫ СВЕТА  [c.297]

Объясним принцип модуляции света на основе линейного элект-рооптического явления. Для простоты рассмотрим кубический кристалл, обладающий изотропным показателем преломления п. На рис. 12.2 показан простейший электрооптический модулятор света. Кристалл с приложенным вдоль оси х напряжением Ej, помещен между скрещенными поляризаторами. На такую систему направляется свет, распространяющийся вдоль оси г. Расположим поляризатор Ml так, чтобы входящее в кристалл излучение было поляризовано под углом 45° по отношению к полю Е . Тогда падающий на кристалл свет имеет равные компоненты поля Е по осям X я у. Приложенное вдоль оси х электрическое поле вызовет определенную разность показателей преломления Ап для компонент светового поля по осям хну. Если длину кристалла по оси z обозначить через /, то возникшая разность фаз между компонентами светового вектора вдоль осей х а у по выходе света из кристалла  [c.287]

Германий применяется для и,чгоговления диодов различных типов, транзисторов, датчиков ЭДС Холла, тензодатчиков, Оптиче-ческие свойства германия позволяют его использовать для изготовления фотодиодов и фототранзисторов, модуляторов света, оптических фильтров, а также счетчиков ядерных частиц. Рабочий диапазон температур германиевых приборов от - 60 до 4-70 °С,  [c.285]

Германий применяется для изготовления выпрямителей переменного тока различной мощности, транзисторов разных типов. Из него изготовляются преобразователи Холла и другие, применяемые для измерения напряженности магнитного поля, токов и мощи сти, умножения двух величин в приборах вычислительной техники и т. д. Оптические свойства германия позволяют использовать его для фототранзисторов и фоторезисторов, оптических линз б большоГ светосилой (для инфракрасных лучей), оптических фильтров, модуляторов света и коротких радиоволн. Внутренний фотоэффект в германии наблюдается и при поглощении средних и быстрых электронов, а также при торможении элементарных частиц больших масс. Так, при поглощении а-частицы отмечается импульс тока продолжительностью около 0,5 МКС, соответствующий прохождению 10 электронов. Поэтому германий может быть использован и для изготовления счетчиков ядерных частиц. На рис. 8-18 приведена вольт-амперная характеристика мощного германиевого выпрямителя б воздушным охлаждением. Рабочий диапазон температур германиевых приборов от —60 до -f70 °С при повышении температуры до верхнего предела прямой ток, например у диодов, увеличивается почти в два раза, а обратный — в три раза. При охлаждении до —(50—60) °С прямой ток падает на 70—75 %.  [c.255]

Для повышения быстродействия и лучшего использования светового потока применяют другие способы, основанные па использовании электрооптич., магнито-оптич. и термопластич. материалов, паз. пространственно-временными модуляторами света. В устройстве, с использованием одного из таких модуляторов на основе электрооптич. кристалла ДКДП (рис. 2), имеется  [c.513]

Лит. Хачатурян А. Г., Теория фазовых превращений и структура твердых растворов, М., 1974 Чуистов К. В., Старение металлических сплавов. К., 1985. В. А. Финкелъ. МОДУЛЯТОРЫ СВЕТА — устройства для управления параметрами световых потоков (амплитудой, частотой, фазой, поляризацией). Простейшие амплитудные М. с.— механич. прерыватели светового луча, в качестве к-рых используют вращающиеся и колеблющиеся заслонки, призмы, зеркала, а также вращающиеся растры. Однако быстродействие и надёжность таких М. с. невелики. Наиб, широкое практич. применение получили М. с. на основе физ. эффектов, при к-рых внеш. поля меняют оптич. характеристики среды, таких, как влектрооптические Поккельса эффект и Керра аффект, магнитооптический Фарадея эффект, фотоупругость и сдвиг края полосы поглощения Келдыша — Франца эффект).  [c.179]


Рис. 4. Интерферендиоиные модуляторы света на основе интерферометров Рождественского (п) и Майкельсона (б) 1 — алек- Рис. 4. Интерферендиоиные модуляторы света на основе <a href="/info/10169">интерферометров Рождественского</a> (п) и Майкельсона (б) 1 — алек-
Рис. 9. Схема акустооптическо-го модулятора света на бегущей волне 8(0 — модулирующий Рис. 9. Схема акустооптическо-го модулятора света на бегущей волне 8(0 — модулирующий
М. с., при к-рой преобразование излучения происходит в процессе его формирования непосредственно в источнике (генераторе) оптич. излучения, наз. внутренней М. с. При внешней М. с. параметры излучения изменяют после его выхода из источника с помощью модуляторов света. Т. к. регистрация излучения модулированного по частоте, фазе или поляризации сопряжена с техн. трудностями, то на практике все эти виды М. с. преобразуют в амплитудную модуляцию либо непосредственно в схеме модулятора, либо  [c.183]

С целью увеличения объёма информации, переносимой световым лучом, используют пространственную М. с., различную в каждой точке поперечного сечения пучка света. Осн. элемент пространств, модулятора света — кристалл, на поверхности к-рого записывается определ. потенциальный рельеф проходящий через кристалл пучок света оказывается промо-дулированным в каждой точке поперечного сечения в соответствии с потенциальным рельефом, записанным на кристалле, при этом модуляция может быть амплитудной и фазовой.  [c.184]

Из многочисл. магнитооптич. эффектов для М. с. наиб, применение нашел Фарадея эффект в прозрачных веществах. Периодически меняющееся магн. поле приводит к периодич. изменению угла вращения плоскости поляризации света, прошедшего через магнитооптич. элемент, помещённый в магн. поле. Угол поворота плоскости поляризации пропорц. длине пути света в веществе и при достаточной прозрачности среды может быть сделан сколь угодно большим. Важной особенностью магнитооптич. модуляторов является постоянство коэф. удельного вращения плоскости поляризации в ИК-диапаэоие длин волн. Это повышает конкурентоспособность магнитооптич. устройств при больших длинах волн оптич. излучения по сравнению с электрооптическими, в к-рых управляющее напряжение линейно возрастает с увеличением длины волны света. В магнитооптич. модуляторах света удаётся достичь глубины модуляции 40% на частотах модуляции до 10 Гц.  [c.184]

Лит. см. при ст. Модуляторы света. А. Н. Напорский. МОДЫ (от лат. modus — мера, образ, способ, вид) — тииы колебаний (нормальные колебания) в распределённых колебат. системах (см. Объёмный резонатор. Оптический резонатор) ИЛИ типы волн (нормальные волны) в волноводных системах и волновых пучках (см. Волновод, Квазиоптика). Термин М. стал употребляться также для любого волнового поля (вне его источников), обладающего определ. пространственной структурой (симметрией). Так появились понятия М. излучения лазера, утекающая М., поверхностная М., М. шепчущей галереи , экспоненциально спадающая М., селекция М. ИТ. д.  [c.185]

Широкое распространение получили дифракционные решётки как диспергирующие элементы в спектральных приборах (монохроматорах, спектрографах, спектрофотометрах и др.) и как элементы резонаторов в лазерах с перестройкой частоты излучения. Они используются также в качестве ответвителей монохроматич. (лазерного) излучения (см. Дифракционный ответвитель) велика их роль в интегральных оптич. устройствах. ракция на ультразвуке в прозрачных средах позволяет определить упругие константы вещества, а вакже создать акустооптич. модуляторы света (см. также Акустооптика), применяемые в светодальномерах, оптич. локаторах и системах оптической связи.  [c.420]

Пространственно-временные модуляторы света обладают высокой светочувствительностью, с ними возможны быстрые запись и стирание, высокая цикличность, они используются для ввода оптич. некогерентных изображений в информац.-вычислит. системы, Б оптич. спецпроцессорах для обнаружения, опознавания образов и слежения, для анализа и преобразования изображений.  [c.432]

Осн. элементами О. являются источники излучения (когерентные и некогерентные), фотоприёмники, модуляторы, дефлекторы, волоконные световоды и согласующие элементы, мультиплексоры и демультиплексоры, а также пространственно-временные модуляторы света (управляемые транспаранты), используемые для двумерного динамич. отображения и обработки ин(][юр-мации.  [c.462]

П. э. широко применяется при создании разл. устройств управления оптич. излучением, таких, как модуляторы света, дефлекторы, Переключатели оптич. каналов и т. ц. Обычно в этих устройствах используются кристаллы LiNbOз (гя., = 30,8-10"1 см/В), Ь)ТаОз (гз = 33-10" см/В), КН РОя (гвз = = 11.10-10 см/В), КП,Р04(г,э = 26,8-10"1 см/В) и др.  [c.6]

Даже проектор, дающий яркое изображение слайда, можно рассматривать как У. я. статич. изображения, т. к. яркость изображения на слайде при фотографировании может быть значительно меньше, чем при проекции. Телевизионная аппаратура тоже может рассматриваться как У. я., если она обеспечивает на экране большую яркость, чем на входе. Однако значительно больший интерес представляют оптически управляемые траиспаранты, называемые также пространственно-временными. модуляторами света. Если интенсивность света, к-рую может модулировать транспарант, окажется больше интенсивности управляющего света, то оптически управляемый транспарант является У. я., притом работающим в реальном времени.  [c.243]


Бнерация сверхкоротких импульсов. Для генерации СКИ в лазерах используют процесс синхронизации продольных мод резонатора лазера. Для синхронизации мод применяются пассивные и активные методы связывания фаз продольных мод лазера. При одинаковой фазе, навязанной всем продольным модам лазера, синфазное сложение амплитуд электрич, полей приводит к генерации СКИ, длительность к-рых ограничена шириной спектра генерации. В неодимовых лазерах, к-рые обычно используют в Ф. с., достигается генерация СКИ длительностью 10" — 10 с при помещении в оптич. резонатор лазера насыщающихся органич. красителей—для пассивной синхронизации мод, а также акустооптич. и эл.-оптич. модуляторов света—для активной синхронизации мод. В методе активной синхронизации мод сфазирование отдельных продольных мод осуществляется с помощью помещаемого внутрь резонатора модулятора для управления потерями резонатора внеш. периодич. сигналом с частотой, равной или кратной частотному интервалу между продольными модами резонатора лазера [3 ].  [c.280]

Электрооптич. явления широко применяются для создания устройств управления оптич. излучением (модуляторы света, дефлекторы, оптич. фазовые решётки и др.) и оптич. индикаторов (жидкокристаллич. дисплеи, цифровые индикаторы и др.), для регистрации напряжённости поля, напр, по эффекту Штарка в плазме, а также для исследования строения вещества, внутримолекулярных процессов, явлений в растворах и кристаллах и т, п.  [c.589]

На основе германия выпускаются выпрямительные плоскостные диоды на прямые токи от 0,3 до 1000 А при падении напряжения не более 0,5 В лавинно-пролетные и туннельные диоды, варикапы, точечные высокочастотные, импульсные и СВЧ-диоды и сплавные биполярные транзисторы. Германий применяют для изготовления датчиков Холла и других магниточувствительных приборов, фототранзисторов и фотодиодов, оптических линз с большой светосилой (для инфракрасных лучей), оптических фильтров, модуляторов света и корютких радиоволн, а также счетчиков ядерных частиц.  [c.336]

В гл. 7 мы рассмотрели электрооптические эффекты в кристаллах, т. е. вопрос о том, как внешнее электрическое поле влияет на распространение электромагнитного излучения. Эти эффекты можно использовать для создания модуляторов света, перестраиваемых спектральных фильтров, электрооптических фильтров, сканирующих устройств и т. п. Электрооптическая модуляция позволяет управлять лазерным пучком или контролировать сигнал излучения с высокой скоростью (вплоть до частоты в несколько гигагерц), поскольку при этом не используется механическое перемещение элементов. В данной главе мы рассмотрим различные такие устройства, их характеристики и принципы действия. Рассмотрим также некоторые важные особенности их конструирования. В гл. 11 мы обсудим электрооптические приборы на основе направляемых волн, такие, как модуляторы и согласующие устройства.  [c.297]


Смотреть страницы где упоминается термин Модуляторы света : [c.287]    [c.245]    [c.508]    [c.508]    [c.512]    [c.514]    [c.50]    [c.73]    [c.349]    [c.179]    [c.180]    [c.182]    [c.183]    [c.251]    [c.432]    [c.462]    [c.549]    [c.686]    [c.244]    [c.463]   
Смотреть главы в:

Справочник конструктора оптико-механических приборов Издание 2  -> Модуляторы света

Справочник конструктора оптико-механических приборов  -> Модуляторы света

Основы флуоресцентной спектроскопии  -> Модуляторы света


Оптическая голография Том1,2 (1982) -- [ c.345 , c.434 , c.563 ]

Техническая энциклопедия том 25 (1934) -- [ c.219 ]



ПОИСК



ЕЭлектрооптические модуляторы света

Магнитооптические модуляторы света. Б. Хилл

Модулятор света. ЗОУ амплитудная

Модулятор света. ЗОУ гармоническая

Модулятор света. ЗОУ импульса частотная

Модулятор света. ЗОУ модуляция

Модулятор света. ЗОУ мультистабильность поляризационная

Модулятор света. ЗОУ фазовая

Модулятор света. ЗОУ электрооптическип

Модуляторы

Модуляторы света пространственные

Модуляторы света пространственные Phototitus

Модуляторы света пространственные на жидких кристаллах

Модуляторы света пространственные на термопластиках

Модуляторы света пространственные на эластомерах

Модуляторы света пространственные обобщенная структура типа

Основные типы электрооптических пространственно-временных модуляторов света

Предобработка изображении с помощью оптически управляемых модуляторов света

Преобразование н усиление яркости изображении с помощью оптически управляемых модуляторов света

Пространственный модулятор света на эффекте электропоглощения

Процессоры, использующие двумерные модуляторы света

Ралея— Джинса формула света модулятор

Системы обработки информации с пространственно-временными модуляторами света

Сопряженные резонаторы с управляемыми модовыми селекторами . 4.5.2. Пространственные. модуляторы света — управляемые внутрирезонаторные селекторы мод

Усиление световых пучков, отраженных от пространственно-временных модуляторов света

Физические основы работы электрооптических пространственно-временных модуляторов света



© 2025 Mash-xxl.info Реклама на сайте