Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и применение сталей при низких температурах

Свойства и применение сталей при низких температурах  [c.261]

Проведение старения непосредственно после горячей механической обработки (ковки или прокатки) приводит к повышению предела текучести на 200—300 МПа, предела прочности на 50— 150 МПа по сравнению со значениями этих показателей для сталей, подвергнутых двойной термической обработке. Поскольку увеличение прочности и даже некоторый рост пластичности и вязкости сохраняется при низких температурах, то следует считать указанную термообработку (старение после ковки) методом улучшения свойств высокопрочных дисперсионно-твердеющих сплавов в случае необходимости их применения в условиях низких температур.  [c.29]


Алюминий находит широкое применение в качестве оболочечного материала и материала трактов для хладагента во многих водоохлаждаемых реакторах вследствие относительно низкого сечения поглощения нейтронов и хорошей коррозионной стойкости в воде в реакторных условиях при низких температурах. Облучение небольшими интегральными потоками нейтронов при комнатной температуре не приводит к большим изменениям свойств легких металлов и сплавов. В табл. 5.11 приведены данные по изменению механических свойств алюминиевых и магниевых сплавов. Можно видеть, что эти изменения по сравнению с изменениями в сталях относительно невелики.  [c.269]

Строительные конструкции. Алюминиевые строительные конструкции находят все более широкое применение. Потребление алюминия и его сплавов для изготовления строительных конструкций за 1971 г. достигло в мировом масштабе внушительной цифры 1,6 млн, т с ежегодным приростом около 8%. Расширяющееся применение алюминиевых сплавов объясняется их легкостью (примерно в 2,9 раза легче стали), широкими пределами прочностных характеристик — повышенной коррозионной устойчивостью, пониженным модулем упругости, повышенной усталостной устойчивостью, высокой технологичностью, возможностью нанесения сравнительно недорогих декоративных покрытий, высокой отражательной способностью, сохранением прочностных свойств при низких температурах, отсутствием магнитных свойств и искрообразования и т. д. Строительные конструкции изготавливают в основном из деформируемых алюминиевых  [c.128]

В связи с большой перспективой применения титана вследствие его малой плотности и высокой прочности при повышенных температурах возникла необходимость улучшения его антифрикционных свойств, которые весьма низки. Последние работы показали возможность значительного повышения износостойкости титана обработкой в струе азота при температуре 850°С в течение 16—30 ч. После азотирования титан показал удовлетворительные результаты (без применения смазки в паре с чугуном, твердым хромовым покрытием и азотированным титаном, а при испытании со смазкой — в паре с бронзой, углеродистой сталью, легированной сталью и бакелитом).  [c.200]

В ряде случаев применение капрона сопровождалось неудачами из-за таких его недостатков как значительная усадка со временем, плохая теплопроводность, нестабильность размеров при колебаниях температуры и влажности, понижение прочности при низких температурах, недостаточная теплостойкость. Эти особенности вызывают, например, необходимость создавать в паре трения с капроновой втулкой зазор больший, чем с бронзовой, в 5—8 раз, что конструктивно часто недопустимо. При скоростях скольжения выше 3 м/сек капроновые втулки недостаточно работоспособны. Поэтому представляло интерес использование в ряде узлов тонкослойных антифрикционных капроновых покрытий стальных деталей. В этом случае хорошие антифрикционные свойства капрона сочетаются с прочностью и хорошей теплопроводностью стали. В тонком слое капрона (0,1—0,2 мм) меньше сказываются его отрицательные свойства.  [c.166]


Еще один легирующий элемент—азот — попадает в сталь из атмосферы. Хотя азот обычно присутствует в значительно меньшем количестве, чем углерод, действие их подобно. Азот оказывает более сильное влияние на стабилизацию аустенита и упрочнение, и определенное количество его может серьезно влиять на пластичность при низкой температуре из-за выпадения нитридов при нагреве до 200° С после холодной деформации. Это явление известно как деформационное старение. Когда азот вызывает какие-либо нежелательные эффекты, его можно связать добавками ванадия, который образует с ним нитриды. Если добавки азота улучшают важные для нас свойства, содержание его может быть увеличено. Азот можно вводить при плавлении под давлением. Кроме того, азотом можно насытить поверхностные слои стали, содержащие алюминий, в процессе азотирования в атмосфере, обогащенной азотом, такой, как атмосфера диссоциированного аммиака. Кроме того, вместе с углеродом, азот может насыщать сталь при нагреве в расплавленных цианистых солях. Эти два наиболее распространенных метода создают твердый, но тонкий поверхностный слой. Азот содержится в сталях, изготовленных с применением кислородного дутья, в небольшом количестве и может быть почти полностью удален вакуумной обработкой.  [c.51]

Алюминиевые сплавы. Для уменьшения массы металлоконструкций все большее применение находят легкие сплавы на основе алюминия и магния. Наряду с малой плотностью (в 2,8...3 раза меньше, чем у стали), что дает возможность облегчать поддерживающие конструкции (подкрановые пути, эстакады и др.), они обладают высокой механической прочностью, близкой к прочности стали СТЗ, большой коррозион-ностойкостью, сохраняют высокие механические свойства при низких температурах (до —65°С).  [c.486]

При динамических нагрузках кроме указанных выше характеристик необходимо учитывать также ударную вязкость а . Для многих углеродистых и легированных сталей ударная вязкость при низких температурах (обычно ниже - 10 °С) резко понижается, что исключает применение этих материалов в таких рабочих условиях. Ударная вязкость для большинства цветных металлов и сплавов (меди, алюминия, никеля и их сплавов), а также хромоникелевых сталей аустенитного класса при низких температурах, как правило, уменьшается незначительно и пластические свойства этих материалов сохраняются на достаточно  [c.38]

Алюминий применяется в строительстве и промышленности благодаря небольшой плотности (2,7 г/см ), примерно в 3 раза меньшей, чем у стали, повышенной хладостойкости, коррозионной стойкости в окислительных средах и на воздухе. Алюминий и его сплавы имеют низкую температуру плавления (660 °С для чистого алюминия), высокую электро- и теплопроводность, повышенный по сравнению со сталью коэффициент линейного расширения. Алюминий и его сплавы существуют двух видов деформируемые (прессованные, катаные, кованые) и литейные (недеформируемые). Специфические свойства при сварке алюминия вызывают определенные трудности. Легкая окисляемость алюминия приводит к образованию на его поверхности плотной тугоплавкой окисной пленки, которая препятствует сплавлению частиц металла и загрязняет шов. Высокая температура плавления окисной пленки и низкая температура плавления алюминия, не изменяющего своего цвета при нагревании, крайне затрудняет управление процессом сварки. Большая жидкотекучесть и малая прочность при температуре свыше 550 °С вызывает необходимость применения подкладок. Значительная растворимость водорода в расплавленном алюминии и резкое ее изменение при переходе из л<идкого состояния  [c.16]

Таким образом, выбирать тип флюса следует с учетом конкретных производственных задач и класса свариваемых сталей. Керамические флюсы более предпочтительны при антикоррозионной и износостойкой наплавке, сварке легированных и высокопрочных сталей, а также сталей, повышенной прочности, работающих при низких температурах. Следует отметить ряд специальных свойств керамических флюсов, определивших их применение при особых разновидностях процесса автоматической и механизированной сварки. Так, наличие в составе керамического флюса большого количества железного порошка или ферросплавов придает ему ферромагнитные свойства. Это было использовано при разработке способа механизированной сварки с магнитным флюсом, представляющего собой один из вариантов механизированной сварки непре-рывны.м электродом с качественным покрытием. Этот способ наиболее перспективен для механизации сварочных работ на стройках при монтаже строительных конструкций.  [c.524]


С целью получения более легких металлоконструкций все большее применение находят легкие сплавы (алюминиевые и магниевые) основными достоинствами которых являются значительно меньший, чем у стали удельный вес (в 2,8—3 раза), что позволяет значительно облегчить поддерживающие конструкции (подкрановые пути, эстакады и т. п.) высокая механическая прочность, близкая к прочности стали Ст. 3 высокая коррозионная прочность, способствующая увеличению долговечности конструкции сохранение высоких механических свойств при низких температурах.  [c.218]

Титан и его сплавы. Титан и его сплавы широко применяются во мно гих областях техники, в частности в химической аппаратуре, судостроении, авиации и ракетостроении, вследствие весьма удачного сочетания свойств высокой удельной прочности, исключительно высокой коррозионной стойкости, значительной прочности при высоких температурах. Чистый титан весьма пластичен. К числу свойств, создающих некоторые затруднения в применении титана в качестве конструкционного материала, относится низкая теплопроводность (в 13 раз меньше, чем у А1, и в 4 раза меньше, чем у Fe), нежелательная в условиях больших термических градиентов, в особенности при тепловом ударе, вследствие опасности возникновения высоких термических напряжений, и в условиях высокочастотных периодических термических колебаний этот недостаток отчасти компенсируется малостью коэффициента термического расширения. Титан имеет низкий, по сравнению со сталью, модуль продольной упругости, затрудняющий получение жестких и вместе с тем легких конструкций, несмотря на высокую удельную прочность.  [c.323]

В табл. 60 указаны свойства ряда сталей при комнатной и низких температурах и области их применения.  [c.232]

Механические свойства ПНП-сталей Og = 1500-е 1700 МПа, Со,2 == 1400-г-1550 МПа, б —- 50-е-бО %. Характерным для этой группы сталей является высокое значение вязкости разрушения Ki и предела выносливости о х. При одинаковой или близкой прочности ПНП-стали пластичнее, а при равной пластичности имеют более высокий предел текучести, чем мартенситно-старею-щие стали или легированные высокопрочные стали. Широкому применению ПНП-сталей препятствует их высокая легирован-ность, необходимость использования мощного оборудования для деформации при сравнительно низких температурах, трудность сварки, анизотропия свойств деформированного металла и т. д. Эти стали используют для изготовления высоконагруженных деталей, проволоки, тросов, крепежных деталей и др.  [c.285]

Развитие современной техники требует постоянного улучшения физико-механических и специальных свойств конструкционных материалов, синтеза новых сплавов, обладающих высокими эксплуатационными характеристиками. Наиболее широко в промышленности используется чугун, доля отливок из которого в общем потреблении металла в СССР составляет 23%- Подавляющая часть отливок (около 70%) производится в машиностроении, где широко используются ценные конструкционные и эксплуатационные свойства чугуна — уникальная циклическая вязкость, высокая износостойкость, прочность чугунов высококачественных марок, сопоставимая с прочностью сталей, хорошая обрабатываемость. Такие технологические свойства чугуна, как высокая жидкотекучесть, ограниченные температуры расплава, малая усадка, обеспечивают благоприятные условия для эффективного применения его в производстве деталей машин, независимо от сложности, размеров и веса этих деталей. В то же время основной объем выплавляемого в СССР конструкционного литого чугуна характеризуется низкими показателями, что в значительной мере обусловлено несовершенством плавильного оборудования, плохим качеством доменных чушковых чугунов и литейного кокса. При этом наблюдается тенденция к дальнейшему ухудшению рабочих характеристик исходных шихтовых материалов. Прочностные показатели серых чугунов обычных марок во многих случаях не удовлетворяют условиям работы деталей машин, качество которых в общей массе остается ниже уровня мировых стандартов. Замена чугунных деталей стальными, как правило, неэкономична и сопровождается потерей ценных технологических свойств чугуна. Ь настоящее время удельный вес низкомарочного чугуна в общем выпуске отливок исключительно высок  [c.3]

Отливки из серого чугуна широко применяются в машиностроении. Литье — самый выгодный и дешевый способ производства деталей сложной формы. Кроме того, чугун в сравнении со сталью обладает более низкой температурой плавления и лучшими литейными свойствами — жидкотекучестью (хорошо заполняет формы в тонких сечениях) и малой усадкой, а также отсутствием больших литейных напряжений. Применение литых деталей из чугуна сокращает и облегчает механическую обработку и позволяет экономнее расходовать металл. Наличие графита в структуре способствует легкому отделению стружки и удалению тепла, образующегося при  [c.171]

На основании анализа технической документации, данных визуального и измерительного контроля, а также контроля элементов сосуда неразрушающими методами принимается решение о необходимости определения химического состава, структуры и механических свойств металла. Такая необходимость возникает, например, при диагностировании сосудов, установленных на открытом воздухе, которые в холодное время года подвергаются воздействию низких температур, в результате чего температура стенки может стать ниже, чем минимальная разрешенная температура применения стали, что может привести к снижению пластических свойств металла и опасности возникновения и развития хрупких трещин. Это относится в первую очередь к сосудам, изготовленным из углеродистых и некоторых низколегированных сталей. Эти работы выполняются обязательно при выявлении аномальных зон с наличием микротрещин или твердостью металла, выходящей за допускаемые пределы. По возможности работы выполняют без вырезки массивных образцов неразрушающим способом путем отбора малых проб (микропроб).  [c.254]


Наибольшую известность имеют силиконовые масла. Сии обладают очень пологой вязкостно-температурной кривой н в этом отношении превосходят все остальные смазочные масла. Им свойственна высокая термическая стойкость, большая сопротивляемость окислению. Сии хорошо противостоят слабым растворам кислот и щелочей, при 150° С не коррозируют сталь, чугун, медь, бронзу, кадмий, хром и сами не подвержены их воздействию. Но силиконы обладают очень низкими противоизносными свойствами и склонностью окисляться при высоких температурах. Температурный предел их применения прп небольших и средних нагрузках от —60 до -Ь200° С. В нефтяных маслах силиконы не растворяются. Плохие смазочные свойства силиконов ограничили область их псиользования главным образом в качестве гидравлических и амортизационных жидкостей.  [c.72]

Стенки вакуумных рубашек 7 изготовлены из коррозионно-стойкой стали Х23Н18 толщиной 0,25 мм для сведения к минимуму притока тепла и начального содержания теплоты. Для предотвращения повреждений камеры в процессе откачки и для увеличения жесткости к корпусу твердым припоем припаивались узкие кольца через определенные интервалы. Применение стали Х23Н18 объясняется ее низким коэффициентом теплопроводности, низкой удельной теплоемкостью, высокой пластичностью и металлургической стабильностью при низких температурах, а также хорошими антикоррозионными свойствами.  [c.18]

Эффективность применения указанных технологических приемов для сглаживания электрохимической гетерогенности сварного соединения во многом зависит от способности основного металла и релаксации остаточных напряжений. В этом направлении представляются весьма перспективными малоуглеродистые стали мар-тенситного класса, обладающие высокой прочностью, пластичностью и ударной вязкостью, например, сталь 07ХЗГНМ (0,1% С 3,0% Сг 0,8—1,2% Ni 0,3—0,35% Мо). Малоуглеродистый мартенсит этой стали имеет тонкую субмикроструктуру, состоящую из пакетов параллельных пластин с высокой плотностью дислокаций, обеспечивающей высокие прочностные характеристики (о з = 1150 МПа, 00,2 = 900 МПа). Однако низкое содержание углерода (от 0,05 до 0,1%) обусловливает сохранение подвижности значительной доли дислокаций, образующихся в процессе у -> а-превращения, и облегчает релаксацию напряжений путем микропластических деформаций. Релаксации напряжений способствует высокая температура начала мартенситного превращения (480 °С и выше). Сталь имеет низкую критическую скорость закалки. Она закаливается с прокатного нагрева, сохраняя при этом высокие технологические свойства (б = 20%, =  [c.220]

Использование газовых атмосфер, жидких сред и вакуума для предотвращения окисления и обезлегирования сталей при нагреве до высоких температур требует разработки сложных агрегатов, создания и применения аппаратов непрерывного контроля состава защитных атмосфер или степени вакуума и т. д. Поэтому на практике вместо обработки в вакууме или нейтральных, контролируемых газовых атмосферах начали применять защитные покрытия. Благодаря хорошим физико-механическим свойствам, низкой себестоимости, малому расходу на единицу площади и небольшим затратам на оснастку такие покрытия находят все более широкое применение для защиты от окисления при термообработке коррозионностойких сталей. Защитный слой, получаемый в результате оплавления покрытия при нагреве под закалку, изолирует металл от печной атмосферы, резко уменьшает диффузию атмосферного кислорода вследствие образования промежуточных защитных слоев.  [c.143]

Для металлов с гранецентрироваиной кристаллической решеткой отношение пределов текучести при —183 С и +20 С меньше 2,5, тогда как для металлов с объемноцентрированной или тетрагональной кристаллической решеткой это отношение превышает 2,5. Это положение подчеркивает важность применения аустенитной стали в качестве материала для конструкций, работающих при низких температурах и нри статической или тем более ударной нагрузке, при условии, что материал не должен обладать очень высоким пределом прочности. Аналогичным образом никелевая сталь хорошо приспособлена для работы при низких температурах. Так, например, для стали с содержанием 5% N1 отношение значений предела текучести при — 83" С и —20" С значительно меньше 2,5. Никелевая сталь сохраняет хорошую вязкость при низких температурах (но не ниже —200° С). В противоположность этому пластические свойства углеродистой конструкционной стали значительно ухудшаются при низких температурах.  [c.446]

Исследование влияния температуры отпуска на прочностные свойства стали 60С2А при испытании на растяжение и изгиб (см. рис. 2.1) показывает, что в результате применения ВТМО характеристики прочности стали при всех температурах отпуска оказываются выше, чем после обычной закалки. Наибольшее различие в значениях всех измеряемых характеристик наблюдается при низких температурах отпуска, с повышением температуры отпуска до 460°С характеристики прочности образцов подвергнутых и не подвергнутых ВТМО, сближаются. Наибольшее различие имеет место при температуре отпуска 220°С ввиду хрупкого разрушения контрольных образцов.  [c.31]

При этом следует иметь в виду, что прочностные свойства всех металлов и сплавов, как правило, с возрастанием температуры понижаются, а с уменьшением — повышаются. Однако у углеродистых, конструкционных и легированных сталей с понижением температуры сильно снижается и ударная вязкость, что делает невозможным применение при низких температурах этих сталей нз-за их хрупкости. Ударная вязкость почти не снижается при низких температурах у высоколегированных гталей аустеннтного класса и цветных металлов и сплавов.  [c.21]

Графит — это единственный конструкционный неметаллический материал, обладающий высокой теплопроводностью при достаточно высокой инертности в большинстве агрессивных сред, термической стойкостью при резких перепадах температуры, низким омическим сопротивлением, а также хорошими механическими свойствами. Теплопроводность искусственного графита выше теплопроводности многих металлов и сплавов, в частности свинца и хромоникслсвых сталей, в 3—5 раз. По этой причине применение графита особенно эффективно для изготовления из него теплообмеиной аппаратуры, предназначенной для эксплуатации в условиях воздействия таких агрессивных сред, как серная кислота определенных концентраций, соляная и плавико-  [c.449]

Детали современных машин и конструкций работают в условиях высоких динамических нагрузок, больших концентраций напряжений н низких температур, Всс st(j енособстиуст хрупкому разрушению и снижает надежность работы маншн. Поэтому конструкционные стали кроме высоких механических свойств, определяемых при стандартных испытаниях ст ,2, б, ф, л , НВ) должны обладать высокой конструктивной прочностью, т. е. прочностью, которая проявляется в условиях их реального применения (в виде деталей, конструкций и т. д.) и характеризует их способность противостоять внезапным разрушениям при наличии пиковых напряжений.  [c.249]


Применение никеля при легировании стали увеличивает ее вязкость и понижает критическую температуру хладноломкости [53, 55]. Высокая хладостойкость малоуглеродистых никелевых сталей позволяет широко использовать их в условиях низких температур. Известно [56], что в стали с 8— 9%-ным содернсанием никеля даже при температуре испытания— 196°С излом ударных образцов остается (на 70— 80%) волокнистым. Однако влияние никеля на механические свойства стали неоднозначно избыточное легирование стали никелем может снизить запас вязкости [55]. Смягчающее действие никеля зависит от содержания в стали углерода, марганца, бора, кремния и вольфрама [51]. В ферритных и малоуглеродистых сталях никель повышает запас вязкости тем сильнее, чем больше его содержание и чем меньше в стали углерода. С повышением количества углерода и общей легированности стали благоприятное влияние никеля умень-  [c.40]

Необходимость мощного прокатного и другого технологического оборудования для осуществления пластической деформации при относительно низких температурах, анизотропия свойств деформированных сталей, сложность сварки — все это ограничивает возможность широкого применения трип-сталей. Из этих сталей изготавливают проволоку, тросы, высоконагру-женные детали.  [c.165]

Хастелой F. Применяется в виде литья и проката для изготовления химической аппаратуры, стойкой в щелочных растворах, в растворах сернистой кислоты и сернистом газе и др. (см. раздел коррозии). Сплав по свойствам близок к легированным аусте-нитным сталям на базе Y-твердого раствора. Он имеет повышенную прочность при высоких температурах, сохраняя достаточную пластичность при кратковременных испытаниях и низкие значения ее при длительных испытаниях. Хастелой F хорошо сваривается с применением присадочной проволоки того же состава. Сварные соединения имеют такую же прочность, что и основной металл, и высокую пластичность.  [c.620]

Обычно цементацию проводят при температурах 920—950 °С. Однако, в связи с тем, что ау-стенит порошковых сталей обладает низкой склонностью к росту зерна, температура цементации пористых изделий может быть существенно повышена. При применении высокотемпературной цементации резко увеличивается скорость насыщения, обеспечивается получение слоев большей глубины за короткое время, осуществляется допекание изделий, а также залечивание пор и повышение механических свойств порошковых сталей.  [c.482]

При рассмотрении сталей перлитного класса наиболее удобна классификация, разделяющая их в зависимости от содержания углерода, поскольку этим определяются такие особенности, как деформируемость и свариваемость, твердость мартенсита после закалки, а также уровень магнитных свойств. Содержание углерода определяет и режимы термической обработки, используемые для придания неаустенитным сталям оптимальных свойств для малоуглеродистых сталей это преимущественно нормализация для среднеуглеродистых, как правило, улучшение [закалка с высоким (600—700 °С) отпуском] для высокоуглеродистых (за исключением быстрорежущих) — закалка с низким (150—200 °С) отпуском. Отпуск штамповых сталей с 0,45 — 0,7 мае. % С и быстрорежущих сталей проводится при средних температурах (450—580 °С). Легирование сталей позволяет изменять ряд свойств прокаливаемость, механические и другие характеристики, термопрочность и термостойкость и, следовательно, диапазон температур возможного применения сталей.  [c.41]

Для исследования склонности стали к образованию поверхностных трещин в слитке применен метод вакуум-кристаллизации, при котором предотвращается образование на стенке изложницы очаговых всплесков и корольков, наблюдающихся при разливке стали обычным способом. Полированная внутренняя поверхность ваку-умированной изложницы, как уже упоминалось, способствует образованию гранености в полом слитке, в тонкостенных участках которого могут возникать трещины, если исследуемые стали имеют низкие механические свойства при температурах, близких к солидусу. В табл. 6 приведены механические свойства некоторых сталей при комнатных и высоких температурах .  [c.102]

Для правомерного определенияна материалах средней и низкой прочности требуются образцы большой толщины. Так для сталей с ffg = 400—700 МПа для обеспечения условий плоской деформации приг комнатной температуре необходимо проводить испытания на образцах толщиной 250 мм, высотой 610 мм, шириной 635 клм для титановых сплавов средней прочности в США используют листовые образцы длиной 400 мм, шириной 120 мм, и толщиной до 80 мм. Это приводит к большому расходу металла и затрудняет испытания из-за необходимости использования машины с большими предельными нагрузками. Не всегда имеются в наличии полуфабрикаты необходимой толщины для определения и, самое главное, механические свойства, определенные на одинаковых стандартных образцах с диаметром 10 мм, но взятых в разных ly e Tax заготовки, существенно различаются, особенно по пределу текучести (это обстоятельство приводит к необходимости регламентировать правила отбора проб из крупных заготовок для того, чтобы можно было надежно сопоставлять результаты испытаний этих образцов на растяжение). Тождественность комплекса механических свойств в крупном и мелком сечении иногда невозможно получить из-за ограниченной прокаливаемости сечения, необходимого Для выполнения критериев правомерности определения Ку , Кроме того, испытания по определению для конструкционных сталей, алюминиевых, титановых и других сплавов низкой и средней прочности и повышенной пластичности должны проводиться при таких температурах и тоЛ-щинах образцов, которые не отражают реальные условия конструирования и эксплуатации. Таким образом, признается необходимость "полунатурных" испытаний, что затрудняет использование этой важной характеристики для широкого практического применения при оценке сопротивления хрупкому разрушению таких важных конструкционных материалов, как низко- и среднеуглеродистые стали.  [c.35]

Основным конструкционным материалом для производства сварных конструкций в течение длительного периода являлась малоуглеродистая сталь (типа Ст.З, Ст.2 и др.), характеризующаяся гарантированной, но невысокой прочностью, высокой пластичностью и хорошей технологичностью, в том числе и свариваемостью. Немаловажное значение имеет и относительная дешевизна этой стали, не содержащей специальных легирующих элементов. Малоуглеродистая сталь наряду с указанными достоинствами имеет и ряд недостатков, из которых важнейшими являются относительно низкая прочность, пониженное сопротивление хрупкому разрушению и повышенная чувствительность к механическому старению. Последние два свойства в значительной мере определяются степенью раскисленности металла (кипящая, по-луспокойная и спокойная) даже лучшая из них — спокойная малоуглеродистая сталь характеризуется невысокими значениями ударной вязкости при минусовых температурах, что в ряде случаев ограничивает область ее применения. Интенсивными исследованиями в последние годы доказано, что применением специальных технологических приемов (регулируемая прокатка, термическое упрочнение и др.) или дополнительным введением в металл модифицирующих элементов (ниобий, ванадий и др.) можно заметно улучшить качественные характеристики малоуглеродистой стали, в том числе и ее сопротивление хрупкому разрушению. Можно преодолеть недостатки малоуглеродистой стали и путем перехода на низколегированные стали (стали повышенной прочности), повышенная прочность и сопротивляемость хрупким разрушениям у которых достигается присадкой легиру ющих элементов и измельчением структуры.  [c.4]

Наиболее широкое применение низколегированных сталей с нитридами алюминия наблюдается в Японии, где разработаны стали типа Ш [135], содержащие 0,04—0,075% A1N. В горячекатаном состоянии марганцовистая сталь IN-60 обеспечивает получение предела, текучести 42 кГ1мм при высокой хладостойкости [Гк(по Лн 2 кГ-м)—70° С и rf —32° С]. Столь высокие хладостойкие свойства сталь типа Ш приобретает благодаря ультрамелкому зерну феррита (балл 10— 12), что достигается, по данным [144], применением схемы прокатки, включающей неполное растворение нитридов алюминия при нагреве (до 1150° С) и низкую температуру конца прокатки. Оставшиеся после нагрева нерастворенные частицы нитрида алюминия реагируют в качестве измельчителя зерна. В этом же направлении действует низкая температура конца прокатки.  [c.143]

Рабочей жидкостью для гидравлических турбин обычно является вода. Однако насосы перекачивают самые разнообразные жидкости с сильно отличающимися термодинамическими свойствами. Даже термодинамические свойства воды значительно изменяются при значительном изменении температуры. Таким образом, при проектировании насосов и их применении необходимо учитывать термодинамические свойства жидкостей (и их паров). Как уже обсуждалось в разд. 6.7, для жидкостей с высоким давлением насыщенного пара (и плотностью) основное влияние термодинамических свойств состоит в уменьшении размеров каверн по сравнению с жидкостями, имеющими низкое давление насыщенного пара, вследствие чего уменьшается влияние самой кавитации на характеристики насоса. Поэтому увеличение температуры данной жидкости ослабляет влияние кавитацни и может привести к подобию кавитационных явлений в нагретой воде и жидком водороде. На этом принципе основан метод моделирования, описанный в разд. 6.7, который Стал и Степанов [11] применяют для насосов, работающих в условиях развитой кавитации.  [c.649]



Смотреть страницы где упоминается термин Свойства и применение сталей при низких температурах : [c.217]    [c.615]    [c.268]    [c.197]    [c.174]    [c.46]    [c.23]    [c.110]    [c.176]    [c.26]    [c.596]    [c.136]    [c.173]   
Смотреть главы в:

Металловедение и технология металлов  -> Свойства и применение сталей при низких температурах



ПОИСК



Сталь Применение

Сталь Свойства

Сталь при низких температурах

Сталь — Температуры

Температура низкая



© 2025 Mash-xxl.info Реклама на сайте