Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никель применение

Железо — никель. В подобных соединениях катодом является никель, который будет в любой атмосфере усиливать коррозию железа. Таким же образом ведут себя возникающие на поверхности никелированного железа пары железо (пора) —никель. Применение подобных контактов, как и никелевых покрытий, если только не приняты специальные меры к уменьшению их пористости или обеспечению внимательного ухода, в промышленной и морской атмосферах приводит неизбежно со временем к появлению коррозии.  [c.141]


В химическом машиностроении применяются никелевые стали марок 25Н и ЗОН. Вследствие дефицитности никеля применение никелевых сталей ограничено.  [c.184]

Таким образом, результаты исследования коррозионной стойкости хромомарганцовых сталей и ее сварных соединений показали, что эта сталь может быть применена в качестве конструкционного материала для химического оборудования, эксплуатирующегося в азотнокислых растворах концентрацией до 45% и температурой до 90°С или более концентрИ)рованных азотнокислых растворах (до 65%) с температурой растворов до 60°С. Совершенно ясно, что вследствие отсутствия в сталях дорогого и дефицитного никеля применение коррозионно-стойких сталей такого типа даст высокий экономический эффект.  [c.72]

Никель — дефицитный и дорогой легирующий элемент и поэтому в тех случаях, когда условия работы конструкции позволяют, используют стали с пониженным его содержанием или без-никелевые хромистые стали. В сплавах на железоникелевой основе содержание никеля еще выше, чем в хромоникелевых сталях. В никелевых сплавах никель служит основой, а железо — легирующей присадкой. Эти сплавы благодаря своим свойствам находят применение в ответственных конструкциях, работающих в сложных и специфических условиях.  [c.279]

Широкое применение во время войны лома хромистых и хромоннкелевых сталей для производства углеродистых сталей обусловило присутствие в них хрома (0,1—0,3%) и никеля (0,2—0,3%).  [c.342]

Очищение стали от вредных примесей (использование чистой шихты в сочетании с современными переплавными процессами) приводит при данном уровне прочности к повышению вязкости (кривые II на рис. 288). Таким образом, применение стали высокой чистоты — реальный способ использования повышенной прочности (Ов>180 кгс/мм2) или экономии никеля (об С 180 кгс/мм2).  [c.368]

В следующую группу вошли никелевые стали, содержащие около 1— 1,5% Ni. Как уже говорилось, никель, в отличие от других элементов, одновременно углубляет прокаливаемость и снижает порог хладноломкости. Для сечений диаметром до 40—70 мм можно рекомендовать применение сталей, приведенных в группе IV.  [c.386]

Наиболее распространенным способом защиты от атмосферной коррозии является применение соответствующих металлов и сплавов, достаточно устойчивых в промышленных эксплуатационных условиях. Повышение коррозионной устойчивости обычных марок углеродистых сталей достигается их легированием более благородными элементами или созданием на их поверхно сти пассивного состояния. Примером получения сплавов, более стойких в атмосферных условиях, чем обычные черные метал.пы, является легирование последних медью, хромом, никелем, алюминием и лр.  [c.182]


Никель в чистом виде находит широкое применение в качестве защитного гальванического покрытия для изделий из железа и стали в целях повышения их коррозионной стойкости в атмосферных условиях. Основное применение никель находит в качестве легирующего элемента для изготовления различных марок высококачественных нержавеющих сталей.  [c.255]

Так, например, при пропускании тока через водный раствор сернокислого никеля с применением никелевых растворимых анодов на катоде протекают следующие реакции  [c.319]

С момента появления первых термометров сопротивления и работы Каллендара по платиновым термометрам термометрия по сопротивлению претерпела существенные изменения. Наряду с классическими платиновыми термометрами сопротивления, применяемыми для измерений с большой точностью и во все возрастающем диапазоне температур, в настоящее время в промышленном масштабе используются проволочные элементы из платины, меди или никеля, а также печатные толстопленочные платиновые элементы. В диапазоне комнатных температур хорошо зарекомендовали себя точные и недорогие термисторы. В научных исследованиях при низких температурах используются термометры сопротивления с чувствительными элементами из сплава родия с железом, германия, углерода и стекло-углерода. Во многих случаях промышленных применений термометры сопротивления как основной инструмент контроля процесса вытесняют термопары. При температурах ниже 700 °С большинство промышленных термометров сопротивления сейчас более компактны и надежны, чем термопары. Кроме того, все более широкое применение микропроцессоров в составе приборов позволяет быстрее и эффективнее, чем было возможно прежде, использовать информацию, содержащуюся в сигнале от термометра.  [c.186]

Наиболее эффективными легирующими компонентами, повышающими устойчивость железа к окислению на воздухе, являются алюминий и хром, особенно если использовать их с добавками никеля и кремния. Отмечено, что сплав 8 % А1—Fe обладает такой же устойчивостью к окислению, как и сплавы 20 % Сг— 80 % Ni [55]. К сожалению, применение стойких к окислению А1—Fe-сплавов ограничено их низкими механическими свойствами, малой прочностью защитных оксидных пленок и способностью алюминия образовывать нитриды, вызывающие охрупчивание. Некоторые из этих недостатков А1—Fe-сплавов преодолеваются посредством легирования хромом.  [c.204]

Бронзы обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, а также хорошей обрабатываемостью и литейными свойствами. В связи с этим бронзы широко применяют в подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках винтовых механизмов, для изготовления арматуры и т. п. Бронзы по основному, кроме меди, компоненту делят на оловянистые, свинцовистые, алюминиевые, бериллиевые, кремнистые и др. Их обозначают буквами Бр и условными обозначениями основных компонентов А — алюминий, Б — бериллий, Ж — железо, К —кремний, Мц —марганец, Н — никель, О — олово, С — свинец, Ц — цинк, Ф — фосфор, а также цифрами, выражающими среднее содержание компонентов в процентах. Например, Бр ОФ 10-1 обозначает бронзу с содержанием 10% олова и 1% фосфора. Фосфористую (Бр ОФ 6,5-1,5) и бериллиевую (Бр Б 2,5) бронзы применяют для изготовления трубчатых пружин, мембран, моментных пружин (волосков) и т. д. Механические свойства и области применения других марок бронз приведены в табл. 16.3.  [c.162]

Жаропрочные литейные сплавы на основе никеля и кобальта находят применение для изготовления деталей реактивных авиационных двигателей. Однако жаропрочные сплавы на никелевой основе получили большее распространение, чем сплавы на кобальтовой основе, так как никелевые сплавы значительно дешевле кобальтовых.  [c.409]

Так, на одном из заводов детали, работающие при температурах до 600 , изготовлялись из дорогостоящей стали с высоким содержанием никеля. Применение процесса химического никелирования позволило заменить дорогостоящую сталь малолегированной и более дешевой сталью и обеспечило необходимую антикоррозионную защиту указанных деталей.  [c.184]


Электролит для предварительного серебрения содержит (г/л) 1—2 AgNOa (в пересчете на металл), 80—90 K N (своб.), 15— 20 К2СО3. Обрабатываемые детали загружают в ванну под током и ведут электролиз 3—5 мин при к= 0,1 Н-0,3 А/дм . Аноды — из стали или никеля. Применение растворимых серебряных анодов нецелесообразно, так как в присутствии большого количества цианида они подвергаются не только электрохимическому, но и химическому растворению, что нарушает материальный баланс ванны и увеличивает расход драгоценного металла.  [c.95]

При диффузионном соединении полупроводниковых кристаллов с молибденом, покрытым золотом, серебром или никелем, функциональные зависимости — = f (р) носят гиперболический характер (рис. 7, кривая IV), указывая, что кинетика роста прочности соединения идет за счет взаимной диффузии быстродиффун-дирующих металлов покрытия в кристаллическую решетку алмазоподобных полупроводников. Применение никеля, как покрытия на молибдене, снижает температуру сварки для кремния и германия на 300 К, арсенида галлия на 450 К (рис. 8, кривая /), карбида кремния на 400 К при одинаковом давлении 39,2 МПа. Нижние асимптоты гиперболических кривых находятся для кремния, германия и арсенида галлия на уровне температуры 673 К, а для карбида кремния — 823 К. Таким образом, диффузионное соединение не образуется при температуре Тсв <С (0,Эч-0,4) даже при применении такого быстродиффундирующего металла,, как никель. Применение серебряного покрытия на молибдене позволяет снизить температуру сварки в 0,2—1,4 раза, т. е. довести ее до 773 К для кремния и 973 К для карбида кремния без изменения давления или уменьшить давление сжатия в 2—3 раза (19,6—9,8 МПа). Диффузионную сварку кремния и германия с серебряным молибденом нельзя вести выше температур соответственно 1103-и 924 К, так как при этом образуются эвтектические сплавы в месте контакта соединяемых материалов (рис. 7, область III). Между температурой сварки Тен и давлением сжатия р при ДСВ чистого кремния с посеребренным молибденом установлена эмпирическая зависимость  [c.235]

Специальные свойства никеля жаропрочность, высокая корро-зпоитгая стойкость, высокое электросопротивление — обусловили достаточно широкое применение технического никеля марок от П-О до П-4, в котором количество примесей ие прев].ппает 2,4% (а — 30- -77 кгс/мм ) б == 2- 50% в зависимости от термообработки и степени деформации), к)иeль- eгалла (53—( iO% Ni 27 — 29% Си 2—3% Fe 1,2—4,8% Ми), а также группы жаропрочных сплавов.  [c.360]

Для сечений диаметром >70 мм при необходимости иметь скнозное улучшение следует применять стали с 2—3% Ni. Наиболее распространеЕ1ные марки сталей такого типа приведены в группе V. Применение достаточно распро-страиенных ранее чисто хромоникелевых сталей, например ЗОХНЗ, нецелесообразно. Эти стали характеризуются высокой склонностью к отпускной хрупкости II рода. Поэтому для изделий крупных размеров, подвергающихся динамическим нагрузкам, целесообразно применять Сг—Ni—Мо или Сг—Mi—Мо—V стали. Естественно, что высокое содержание никеля в этих сталях снижает порог хладноломкости до более низких температур, чем у других сталей,  [c.388]

Понижение порога хладноломкости и увеличение содер ка-ния волокна (%) в изломе приводит к поеышепию механических свойств. Наиболее простым решением вопроса является введение в сталь никеля, элемента, — понижающего температуру перехода в хладноломкое состояние и поэтому увеличивающего долю волокна в изломе в высокояроч.нон стали. В связи с этим улучшаются вязкие свойства, однако в обычных сталях нельзя увеличить содержание никеля свыше 4%, так как появляется остаточный аустенит (имеющий пониженную прочность, а продукты его распада пониженную вязкость), понижается то1Ч,ка A i и нельзя провести высокий отпуск. Решение задачи применения высоконикелевой стали состояло в одновременном легировании стали никелем и кобальтом. Кобальт повышает мартенситную точку (рис. 303) и уменьшает поэтому количество остаточного аустенита (рис. 303,6). Одновременно кобальт повышает точку A i и позволяет провести операцию высокого отпуска.  [c.392]

Цветные металлы и силаны также подвержены 1 азовой 1(орро-зии при повышенных температурах. В особенности быстро окисляются при высоких температурах цинк, кадмий и свипен,. Вследствие низкой температуры плавления. эти металлы нашути ограниченное применение при температурах выше 1.50 "С. Большое практическое значение имеет жаростойкость таких коиструкцион-тдх металлов, как алюминий, медь н сплавы. этих металлов, л также никель и сплавы па его основе, титан и его сплавы.  [c.140]

Введение в хромистую сталь никеля и применение никеля и его сплавов в сернистых газах при температурах выше 600° С неэффективно. Объясняется это тем, что при действии на никель сернистых соединений образуется сернистый никель, который дает с никелем легкоплавкую эвтектику N1 — N13812, плавящуюся при температуре около 625°С. Образование этой эвтектики в  [c.154]

Железо и никель, обладая взаимрюй растворимостью, дают непрерывный ряд твердых растворов. Никель способствует образованию сплавов с неограниченной у-областью. Железоникелевые сплавы устойчивы в растворах серной кислоты, щелочей и ряда органических кислот. Однако железоникелевые сплавы не нащли широкого применения в качестве конструкционных материалов в химическом машиностроении, так как они не имеют особых преимуществ по сравнению с хромистыми сталями.  [c.218]

Чистый никель в химическом машиностроении нашел сравнительно ограниченное применение, несмотря на то что, помимо коррозионной стойкости, он обладает повышенной жаростойкостью, значительной пластичностью, хорошими механическими показателями и способностью подвергаться различным видам механической обработки (никель легко прокатывается в горячем и холодном состоянии). Объясняется это тем, что никель не имеет особых преимугцеств по сравнению с нержавеющими сталями, но в некоторых средах, в которых легированные стали непригодны, нашли примеггеиие сплавы никеля с медью и его сплавы с молибденом.  [c.255]


Несмотря на ценные свойства, применение никельмолибдено-вых сплавов ограничено вследствие высокой стоимости никеля и молибдена.  [c.260]

Несмотря на большое количество коррозионностойких металлов и сплавов, обладающих самыми разнообразными свойствами, эти конструкционные материалы в ряде производств не могут удовлетворить растущие потребности химической промышленности как с качественной, так и с количественной стороны. В первом случае некоторые новые технологические процессы, связанные с получением чистых химических продуктов, фармацевтических препаратов, продуктов органического синтеза, с реакциями хлорирования, бромирования и т. п., не могут быть осуществлены в аппаратуре из металлических материалов. Во втором случае такие производства, как производство минеральных кислот, удобрений, солей и др., требуют для оформления их технологического оборудования больиюго количества дорогостоящих дефицитных металлов и сплавов — высоколегиршшиных сталей, свинца, никеля, меди и других цветных метал/юг, и сплавов. Применение неметаллических материалов часто позволяет решать указанные выше задачи.  [c.352]

Легирование никеля медью несколько повышает стойкость металла в восстановительных средах (например, в неокислительных кислотах). Ввиду повышенной стойкости меди к питтингу, склонность сплавов никель—медь к питтингообразованию в морской воде ниже, чем у никеля, а сами питтинги в большинстве случаев неглубокие. При содержании более 60—70 ат. % Си (62—72 % по массе) сплав теряет характерную для никеля способность пассивироваться и по своему поведению приближается к меди (см. разд. 5.6.1), сохраняя, однако, заметно более высокую стойкость к ударной коррозии. Медно-никелевые сплавы с 10—30 % Ni (купроникель) не подвергаются питтингу в неподвижной морской воде и обладают высокой стойкостью в быстро движущейся морской воде. Такие сплавы, содержаш,ие кроме того от нескольких десятых до 1,75 % Fe, что еще более повышает стойкость к ударной коррозии, нашли применение для труб конденсаторов, работающих на морской воде. Сплав с 70 % Ni (мо-нель) подвержен питтингу в стоячей морской воде, и его лучше всего применять только в быстро движущейся аэрированной морской воде, где он равномерно пассивируется. Питтинг не образуется в условиях, когда обеспечивается катодная защита, например при контакте сплава с более активным металлом, таким как железо.  [c.361]

При введении в никель хрома он приобретает стойкость в окислителях (в частности, HNO3 и Н2СГО4). Определенное по измерениям критической плотности тока минимальное массовое содержание хрома, необходимое для анодной пассивации сплава в серной кислоте, составляет 14 % [3]. Однако сплавы с хромом более чувствительны к воздействию С1 и НС1. В неподвижной морской воде на них образуются более глубокие питтинги. Хром повышает также стойкость никеля к окислению при повышенных температурах. Широкое применение нашел сплав, содержащий 20 % Сг и 80 % Ni (см. разд. Ю.11.3).  [c.361]

По техническим условиям на работу узла иногда не допустимо применение жидких или консистентных смазок (вакуум, агрессивные среды). В этом случае используют либо твердые смазочные покрытия, либо самосмазывающиеся материалы. Наиболее известны твердые смазки — графит, MoSj н пленки из никеля, кобальта, серебра, золота.  [c.747]

Дальнейшее развитие метода механического селектора шло по пути устранения этих недостатков. Для расширения области исследуемых энергий кадмий был заменен другими материалами (никель, сталь хром), которые характеризуются более плавным ходом сечения в зависимости от энергии нейтронов и, следовательно, при достаточно большой Рис. 128. толщине могут использоваться как поглотители нейтронов и при высоких энергиях. Применение в качестве затворов массивных цилиндров, изготовленных из этих материалов (рис. 128), позволило расширить область применения метода примерно до 10 000 эв, а использование цилиндров, изготовленных из металла в комбинации с водородсодержащими пластиками, даже до 100 кэв. Так как разрешающая способность ухудшается с ростом энергии нейтронов, то использовать эту новую возможность было нельзя без существенного повышения разрешающей способности. Улучшение разрешающей способности метода достигалось увеличением скорости вращения (до 40 000 об1мин), улучшением коллимации пучка, уменьшением ширины каналов (до 0,5 мксек) и, наконец, увеличением пролетного расстояния (до 100—200 м) . Разумеется, каждый новый шаг в этом направлении требовал увеличения интенсивности первичного пучка.  [c.337]


Смотреть страницы где упоминается термин Никель применение : [c.45]    [c.197]    [c.355]    [c.538]    [c.236]    [c.31]    [c.339]    [c.384]    [c.633]    [c.200]    [c.247]    [c.206]    [c.227]    [c.230]    [c.230]    [c.257]    [c.39]    [c.267]    [c.131]    [c.34]    [c.160]   
Общая металлургия Издание 3 (1976) -- [ c.50 ]



ПОИСК



68, 69 — Свойства 67—69 — Химический состав марганец—никель, железо—марганец 83, 84 — Применение 83 — Свойства

Никель

Применение золотые — Диаграмма состояния сплавов систем золото—серебро, золотомедь, золото—никель 79 — Применение 74, 77, 79 — Свойства 74, 76—79 — Химический состав

Применение медно-никелевые — Диаграмма состояния сплавов системы медь—никель

Свойства и применение никеля. Никелевые сплавы. Полуфабрикаты из никеля и его сплавов

Химический никелевые — Диаграмма состояния сплавов системы никель—хром 79 Применение 79—82 — Свойства 79—82 — Химический состав



© 2025 Mash-xxl.info Реклама на сайте