Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Запас вязкости

Поэтому для машиностроительных деталей небольших сечений высокие механические свойства получаются при простых легированных сталях типа 40Х. Присадка бора ( 0,003%) увеличивает предельный диаметр изделия, но несколько повышает порог хладноломкости, хотя запас вязкости будет не хуже, чем в углеродистых сталях.  [c.386]

Однако сейчас к современным материалам должны предъявляться несколько иные требования, чем раньше. Смысл этих требований — обязательное сочетание высокого уровня специальных свойств с достаточным запасом вязкости разрушения.  [c.134]


Расчёт площадей 14—18 Заливка подшипников баббитом — см. Подшипники-Заливка баббитом Заливы литейные 6 — 252, 259 Замазки стержневые 6—100 Замки гидравлические 12 — 424 Запас вязкости 1 (2-я) —417  [c.80]

Н. Н. Давиденковым [12] введено понятие О температурном запасе вязкости  [c.41]

Хрупкость. О склонности материала к хрупкости можно судить по его вязкости. Запас вязкости служит мерилом хрупкости материала [9]. Обычный метод определения хрупкости — испытанием на удар надрезанных образцов — к тонкой проволоке неприменим. На практике хрупкой считают проволоку, которая даёт низкие показатели по числу перегибов и скручиваний.  [c.407]

Температурный запас вязкости определяется по формуле Н. Н. Давиденкова [8]  [c.535]

Запас вязкости температуры — Определение 535 Запас долговечности 522  [c.627]

Какими методами определяется порог хладноломкости и как можно использовать на практике знание температурного запаса вязкости  [c.118]

Повышение прочности (Од) обычно сопровождается понижением пластичности (б, ф), вязкости (КС, КСТ, Кхс) и повышением порога хладноломкости (4о)- Только измельчение зерна аустенита, вызывая повышение ао,а. понижает порог хладноломкости (см. рис. 80), увеличивая температурный запас вязкости. Поэтому конструкционные стали должны быть мелкозернистыми. Мелкое зерно в значительной степени компенсирует отрицательное влияние других видов упрочнения на температурный порог хладноломкости.  [c.253]

Многие детали машин (коленчатые валы, валы, оси, штоки, шатуны, ответственные детали турбин и компрессорных машин и др.) изготовляют из среднеуглеродистых сталей (0,3— 0,5 % С) и подвергают закалке и высокому отпуску (улучшение). Стали закаливаются от 820—880 °С (в зависимости от состава) в масле (крупные детали охлаждают в воде) и проходят отпуск при 550—680 °С. После такой обработки структура стали — сорбит. Стали должны иметь высокий предел текучести, малую чувствительность к концентраторам напряжений, в изделиях, работающих при многократно прилагаемых нагрузках, высокий предел выносливости и достаточный запас вязкости (K U, КСТ, Ki )- Кроме того, улучшаемые стали должны обладать хорошей прокаливаемостью и малой чувствительностью к отпускной хрупкости.  [c.275]

Хромоникелевые стали. Благодаря большей устойчивости переохлажденного аустенита хромоникелевые стали обладают высокой прокаливаемостью, хорошей прочностью и вязкостью. Они применяются для изготовления крупных изделий сложной конфигурации, работающих при вибрационных и динамических нагрузках. Никель обеспечивает наибольший запас вязкости, а в сочетании с хромом и молибденом — большую прокаливаемость. Никель, особенно в сочетании с молибденом, сильно снижает порог хладноломкости. Чем выше содержание никеля, тем ниже допустимая температура применения стали и выше ее сопротивление хрупкому разрушению.  [c.280]


При статическом нагружении дефекты увеличивают опасность хрупкого разрушения. Как и в других случаях, наиболее опасны острые трещиноподобные дефекты трещины, непровары, подрезы. Опасность дефектов усиливается при пониженной температуре (особенно ниже -60 °С), при предварительном нагружении материала детали внешними или сварочными напряжениями, при повышенном содержании углерода и при увеличенном поглощении водорода. Когда материал соединения обладает большим запасом вязкости, основное влияние на прочность ока Зывает относительная величина дефекта. В ряде случаев (для сравнительно малонагруженных соединений из пластичных материалов) безопасное ослабление стыкового шва может достигать 30 %.  [c.340]

Таким образом, образующийся в результате низкого отпуска отпущенный мартенсит Мо обладает более благоприятным комплексом механических свойств, сочетающим высокий уровень твердости с некоторым, хотя и небольшим, запасом вязкости и пластичности.  [c.116]

О пригодности материала для работы при заданной температуре судят по температурному запасу вязкости, равному разности температуры эксплуатации и При этом, чем ниже температура перехода в хрупкое состояние по отношению к рабочей температуре, тем больше температурный запас вязкости и выше гарантия от хрупкого разрушения.  [c.229]

На рис. 8.5 показан случай, когда ударная вязкость двух сталей при температуре эксплуатации, равной 20 С, одинакова. Однако переход в хрупкое состояние стали 1 (мелкозернистой) заканчивается при — 40 °С, а стали 2 (крупнозернистой) при 0°С. По сравнению с температурой эксплуатации температурный запас вязкости у стали 1 составит 60 °С, а у стали 2 лишь 20 °С. Сталь 1 более надежна в работе, так как возможное понижение температуры эксплуатации относительно расчетной при наличии треш ин и ударной нагрузки не вызовет в ней хрупкого разрушения.  [c.229]

Как говорилось выше, надежным конструкционным материалом является такой, в котором работа распространения трещины не равна нулю. Поэтому эксплуатировать в сколь-нибудь ответственных случаях металл при температуре ниже Ти нельзя. Лучше в"его применить материал, у которого Тв лежит ниже температуры эксплуатациг Разница между температурой эксплуатации и Tso (поскольку допустимо во многих случаях некоторое количество хрупкой составляющей в изломе) называют запасом вязкости.  [c.74]

Запас вязкости не может быть равным нулю, так как возможны возникновения в процессе эксплуатации, ухудшающие вязкость (повышающие порог хладноломкости) обстоятельства, а это приведет к охрупчиванию материала. В соответствии с этим, положение порога хладноломкости характеризует сопротивление хрупкому разрушению. Чем ниже положение порога, тем более надежен материал, так как охрупчивающие факторы могут еще и не перевести его в состояние, склонное к хрупкому разрушению.  [c.74]

Легирование другими элементами хромистой стали также повышает прокаливаемость. Для сечений диаметром 20—40 мм, кроме стали 40ХР, можно применять стали других марок из И1 группы. Стали этой группы дополнительно легированы марганцем, молибденом, кремнием, титаном. Все перечисленные элементы углубляют прокаливаемость и все, кроме молибдена, уменьшают запас вязкости. В этой группе выделяется по вязкости сталь ЗОХМ. Хотя прокаливаемость у нее не на много выше, чем у стали 40Х, но порог хладноломкости ниже кроме того, сталь ЗОХМ нечувствительна (как и другие молибденовые стали) к отпускной хрупкости II рода.  [c.386]

Сравнивая стали 40ХН, 40.ХНР, 40ХГНР, видим, как добавка бора и марганца, углубляя прокаливаемость, одновременно снижает запас вязкости. Наилучшей по прокаливаемости и запасу вязкости в этой группе сталей является сталь 40ХНМ, что объясняется влиянием комплекса легирования ( r+Ki+ - -Мо) и более высоким содержанием никеля по сравнению с другими сталям г этой группы.  [c.386]


Температурный запас вязкости Пт по Н. Н, Давиден-кову при этом определяется из отношения  [c.20]

Полученные закономерности подтверждаются анализом результатов испытания на изнашивание сплавов с однотипной структурой. Наплавки, имеющие структуру перлит-Ь цементит и мартенсит, разрушающиеся хрупко и независимо от энергии удара, повышали износ при увеличении твердости. Износ сплавов, имеющих структуру феррит-h перлит, аустенит и аустенит- -продукты распада и обладающих определенным запасом вязкости, утленьшался с повышением их твердости.  [c.171]

Применение никеля при легировании стали увеличивает ее вязкость и понижает критическую температуру хладноломкости [53, 55]. Высокая хладостойкость малоуглеродистых никелевых сталей позволяет широко использовать их в условиях низких температур. Известно [56], что в стали с 8— 9%-ным содернсанием никеля даже при температуре испытания— 196°С излом ударных образцов остается (на 70— 80%) волокнистым. Однако влияние никеля на механические свойства стали неоднозначно избыточное легирование стали никелем может снизить запас вязкости [55]. Смягчающее действие никеля зависит от содержания в стали углерода, марганца, бора, кремния и вольфрама [51]. В ферритных и малоуглеродистых сталях никель повышает запас вязкости тем сильнее, чем больше его содержание и чем меньше в стали углерода. С повышением количества углерода и общей легированности стали благоприятное влияние никеля умень-  [c.40]

Развитие представлений об условиях образования хрупких состояшгй привело к понятиям о температурном запасе вязкости, о первой и второй критической температурах как характеризующих соответственно квази-хрункое и хрупкое состояние. Энергетическая трактовка в упруго-нласти-ческой постановке условий распространения инициированной трещины дала возможность охарактеризовать критический размер трещин или дефектов, способствующих возникновению хрупких разрушений, а путем применения статических представлений о вероятности существования опасных дефектов в напрягаемых объемах — оценить роль абсолютных размеров на прочность при хрупких состояниях. Результаты исследований критерием хрупкого разрушения обосновали методы испытания, позволяющие определять критические температуры и размеры трещин, а также разрушающие напряжения при квазихрупком и хрупком состоянии, необходимые для выбора материалов, производственных и эксплуатационных условий, исключающих воз-мон ность хрупких разрушений.  [c.41]

Давнденкова метод измерения деформации 492 Давиденкова формула о температурном запасе вязкости 481 Давления контактные допускаемые 481  [c.541]

Исключение составляют никель и молибден. Никель повышает сопротивление хрупкому разрушению стали, увеличивая пластичность и вязкость, уменьшая чувствительность к концентраторам напряжений и понижает температуру порога хладноломкости. При содержании в стали I % N1 порог хладноломкости снижается на 60—80 "С, дальнейшее увеличение концентрации никеля до 3—4 % вызывает менее сильное, но все же снижение порога хладноломкости. Повышая запас вязкости, никель увеличивает КСТ и Д 1 . Введение 3—4 % N1 рекомендуется для обеспечения глубокой прокаливаемости. Никель — дорогой металл, поэтому чаще в конструкционные стали его вводят совместно с хромом и другими элементами и притом в предельно минимальном количестве. В сложнолегированных сталях никель также обеспечивает высокое сопротивление хрупкому разрушению.  [c.260]

Хромоникелевые аустенитные стали 12Х18НЮТ и 08Х18Н10Т. Эти стали получили наибольшее применение. Из них изготовляют крупногабаритные газораспределительные установки большой мощности для получения сжиженных газов (О2, На, На и др.), транспортные емкости и хранилища сжиженных газов. Они хорошо свариваются и обладают большим запасом вязкости при криогенных температурах (при —253 °С ао,а = 600 МПа н КСи = 1 МДж/м ). Высокий запас пластичности стали  [c.299]

Основным требованием, предъявляемым к криогенным сталям, является гарантированный запас пластичности и вязкости разрушения при рабочих температурах Мате риал в условиях низких температур не должен обладать склонностью к хрупкому разрушению, т е интервал ра бочих температур должен находиться выше порога хлад ноломкости стали В общем случае, чем больше разница между температурой эксплуатации и порогом хладнолом кости, тем выше запас вязкости материала  [c.242]

Материалы, идущие на изготовление конструктивных элементов, деталей машин и механизмов, должны наряду с высокой прочностью и пластичностью хорошо сопротивляться ударным нагрузкам, обладая запасом вязкости. При знакопеременных нагрузках конструкционные материалы должны обладать высоким сопротивлением усталости, а при трении — сопротивлением износу. Во многих случаях необходимо сопротивление коррозии. Учитывая, что в деталях всегда имеются дефекты, являющ иеся концентраторами напряжений, конструкционные материалы должны обладать высоким сопротивлением хрупкому разрушению и распространению трещин.  [c.275]

В судостроительных корпусных сталях предусмотрен запас вязкости за счет снижения температуры образцов по сравнеьшю с рабочей температурой  [c.315]

Развитие техники, стремление к созданию машин наименьшей массы требуют применения высокопрочных сталей, имеющих <Тв > 1500 МПа. Для предупреждения хрупкого разрушения таким сталям необходим определенный запас вязкости (K Uне менее ,2 МДж/м ). Кроме того, расчет рабочих напряжений в деталях из этих сталей необходимо вести не только по значению <то,2) но и по предельно допустимому размеру дефекта с использованием критерия Ki . При использовании высокопрочных сталей важно также соблюдение определенных требований к конструированию деталей и технологии обработки их поверхности. При проектировании необходимо избегать конструктивных концентраторов напряжений, а при изготовлении не допускать на поверхности глубоких рисок, царапин, обеспечивать минимальную ее шероховатость.  [c.266]


Среднеуглеродистые комплексно-легированные низкоотпущенные стали. После закалки и низкого отпуска уровень прочности стали определяется содержанием углерода и практически не зависит от присутствия легирующих элементов. Увеличение содержания углерода до 0,4 % повышает временное сопротивление до 2400 МПа, но углеродистая сталь имеет полностью хрупкое разрушение. Необходимый запас вязкости при такой или несколько меньшей прочности достигается совокупностью мероприятий, главные из которых направлены на подбор рационального состава стали, получение мелкого зерна, обязательного для высокопрочного состояния, повышение металлургического качества металла.  [c.267]

Понижение температуры эксплуатации сопровождается увеличением статической и циклической прочности, снижением пластичности и вязкости, повышением склонности к хрупкому разрушению. Важнейшее требование, определяющее пригодность материала для низкотемпературной службы, — отсутс вие хладноломкости. Хладноломкость характерна для железа, стали, металлов и сплавов с ОЦК и ГП решетками. Для надежной работы материала необходимо обеспечить температурный запас вязкости. Это достигается тогда, когда порог хладноломкости материала расположен ниже температуры его эксплуатации. Необходимый температурный запас вязкости зависит от факторов, влияющих на склонность к хрупкому разрушению (наличия концентраторов напряжений, скорости нагружения, размеров детали). Чем больше температурный запас вязкости, тем меньше опасность хрупкого разрушения материала, выше его эксплуатационная надежность.  [c.509]


Смотреть страницы где упоминается термин Запас вязкости : [c.190]    [c.644]    [c.70]    [c.255]    [c.267]    [c.270]    [c.102]    [c.226]    [c.342]    [c.41]    [c.285]    [c.100]    [c.115]    [c.240]    [c.372]    [c.229]    [c.266]    [c.13]   
Металловедение (1978) -- [ c.74 ]

Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.417 ]



ПОИСК



Давиденкова формула о температурном запасе вязкости

Запас

Запас вязкости температуры — Определение

Температурный запас вязкост

Температурный запас вязкости

Температурный запас вязкости по Давиденкову



© 2025 Mash-xxl.info Реклама на сайте