Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетика процесса взаимодействия поверхностей

КИНЕТИКА ПРОЦЕССА ВЗАИМОДЕЙСТВИЯ ПОВЕРХНОСТЕЙ  [c.100]

ЭЭЭ при пластической деформации. В последние годы многие исследователи приходят к заключению что явление ЭЭЭ определяется рядом свойств поверхности и объясняется совокупностью взаимосвязанных процессов, одновременно протекающих на поверхности при ее возбуждении. Установлено, что ЭЭЭ при деформировании связана с кинетикой размножения, отжига и взаимодействия структурных дефектов [27]. Интересна возможность после окончания деформации разделения эффекта ЭЭЭ на две стадии, одна из которых связана с отжигом вакансий, а другая — с дислокационной структурой. Метод ЭЭЭ можно применять также для исследования кинетики процессов взаимодействия вакансий с примесями и дислокациями.  [c.88]


Основные показатели переноса электродного металла. При плавлении на торце электрода образуется капля жидкого металла. Большая удельная поверхность и высокие температуры капель при дуговой сварке плавлением способствуют интенсивному взаимодействию металла с окружающей средой. Поэтому характер переноса электродного металла оказывает значительное влияние на кинетику процессов взаимодействия металла со шлаком и газами.  [c.71]

Из формулы (17.19) по аналогии с формулой для теплопередачи следует, что скорость Ш реакции определяется величиной двух последовательных сопротивлений , которые должен преодолеть газообразный реагент на пути превращения из исходного состояния в конечное диффузионного сопротивления 1 /р, определяемого интенсивностью массо-отдачи между газом и поверхностью, и кинетического сопротивления /к, зависящего от скорости собственно химического взаимодействия. Если реагент доставляется к поверхности раздела значительно легче, чем реагирует с нею, т. е. р э>й, то его концентрации у поверхности и вдали от нее равны с Со и При этом скорость реакции определяется только кинетикой процесса (значением к) и практически не зависит от условий массоотдачи. Такой режим называется кинетическим. В этом режиме интенсивность сгорания можно увеличить за счет увеличения значения к, т. е. прежде всего за счет повышения температуры.  [c.154]

Кинетика процесса определяется образованием жидкой фазы (при 1400° С и выше), которая обеспечивает большую поверхность взаимодействия между окислом и углеродом. По мере повышения температуры наблюдаются улучшение кристаллизации карбида кремния и рост его зерен. При температурах 2000—2200° С Si имеет гексагональную кристаллическую решетку.  [c.370]

Как уже отмечалось в 6.1, для расчёта кинетики процесса изнашивания на макроуровне обычно используют феноменологические модели, в которых считается известным уравнение износа, т. е. соотношение, устанавливающее связь между характеристиками износа поверхности и рядом параметров, характеризующих свойства фрикционного контакта и условия взаимодействия.  [c.354]

Таким образом, на адгезионную прочность и кинетику процесса формирования адгезионного взаимодействия оказывают влияние потенциалы катода и устойчивости, характеризующие свойства поверхности и электролитов.  [c.290]


Направление и кинетику протекания процессов при диффузионной пайке обусловливают два обстоятельства а) твердая и жидкая фаза контактируют но поверхности раздела б) количество жидкой фазы весьма мало по сравнению с количеством твердой фазы. Процессы взаимодействия между жидкой и  [c.160]

Можно предполагать, что в этом случае возможна не только специфическая адсорбция ингибитора, но и адсорбция продуктов взаимодействия ингибитора с образующейся в кислоте солью металла. Вследствие этого действие ингибитора становится сходным со своеобразным пассивированием металла. В результате такого пассивирования реакция металла с кислотой может происходить только за счет диффузии ионов кислоты через узкие поры образовавшегося защитного слоя. При этом кинетика процесса коррозии приобретает диффузионный характер, чем и объясняется низкий температурный коэффициент реакции . Вероятно, что при более высокой температуре количество вещества, пассивирующего поверхность, больше, чем при низкой, так как образование защитной пленки протекает быстрее, чем ее растворение.  [c.36]

Об интенсивности процессов взаимодействия эмали с металлом некоторое представление могут дать такие электрохимические характеристики, как величина тока обмена, изменение потенциала и емкости двойного электрического слоя. Но в отличие от водных растворов, где разработаны и успешно используются различные методы измерения этих величин для оксидных расплавов, техника измерения осложнена трудностями, связанными с высокой температурой, сложностью химического состава оксидных расплавов, протеканием побочных процессов, связанных с окислением металла кислородом окружающей атмосферы. Тем не менее в работах Ю. П. Никитина, Н. С. Смирнова [5, с. 52—59 46, 47] сделана попытка оценить процессы на границе раздела металл—эмаль определением токов обмена, емкости и сопротивления двойного электрического слоя системы эмаль—сталь в зависимости от состава эмали и степени окисленности поверхности стальных образцов. Изучена кинетика взаимодействия на границе раздела жидких фаз чугун— шлак с различным содержанием окислов железа установлено, что величина тока обмена находится в прямой зависимости от концентрации ионов Fe " в шлаке.  [c.34]

Выделяющийся в атомарном состоянии кремний осаждается на поверхности насыщаемого металла и взаимодействует с ним, образуя силицидные слои. Процесс газового силицирования проводят обычно в специальных реакторах путем пропускания над поверхностью металла, нагретого прямым пропусканием тока или токами высокой частоты, газовой смеси, состоящей из галоидных соединений кремния и водорода. На состав образующегося силицидного слоя и кинетику процесса должны оказывать влияние температура и время насыщения, состав и давление газовой смеси, скорость прохождения газового потока через реакционное пространство. Однако единого мнения о влиянии технологических факторов на процесс газового силицирования в настоящее время не имеется и данные различных авторов [17 —19] носят противо-  [c.35]

Поскольку количество жидкой фазы в соединительном зазоре весьма ограниченно, а количество твердого основного металла можно считать бесконечным, то достигнутое равновесие будет неустойчивым и должно рассматриваться как текущий этап в процессе взаимодействия твердой и жидкой фаз. Поэтому с увеличением выдержки при температуре пайки равновесие будет смещаться в сторону получения во всем объеме взаимодействующих металлов состава, соответствующего насыщенному твердому раствору (точка В). Кинетика этого процесса после достижения равновесного состава жидкой и твердой фаз определяется диффузией. Припой диффундирует в основной металл, вследствие чего жидкость пересыщается основным металлом. При определенном пересыщении происходит выделение из нее на поверхность основного металла твердого раствора. Процесс этот будет протекать до тех пор, пока в шве не израсходуется вся жидкость и не произойдет полная изотермическая кристаллизация. В результате состав наиболее легкоплавкого сплава в шве будет отвечать солидусу равновесной диаграммы состояния (точка Г>).  [c.93]


Термодинамические условия и температурная зависимость константы равновесия определяют возможность протекания реакции в нужном направлении. Реальные условия осуществления процесса, в особенности для гетерогенных реакций, к которым, в частности, относятся процессы восстановления металлов, определяются кинетическими факторами. При получении металлических порошков большое влияние на кинетику процесса оказывают поверхностные явления в связи со значительной удельной поверхностью образующихся порошков и исходных соединений (например, окислов), а иногда и восстановителей (твердый углерод). К числу таких явлений следует отнести адсорбцию, хемосорбцию, химические взаимодействия в адсорбированных слоях, каталитическое действие развитых и контактных поверхностей, десорбцию газообразных продуктов реакции, диффузионные процессы и т. д.  [c.62]

В книге рассмотрены вопросы высокотемпературной коррозии процесс образования коррозионно-активных компонентов золы и их взаимодействие с металлом кинетика коррозии котельных сталей в зависимости от вида топлива коррозионно-эрозионный износ поверхностей нагрева. Изложены инженерные методы расчета глубины высокотемпературной коррозии и износа.  [c.2]

Глава начинается с обсуждения основных термодинамических свойств металлов и окислов, причем основное внимание уделено тем окислам, которые могут быть использованы в виде волокон и покрытий. Затем рассмотрено применение методов термодинамики твердых растворов для оценки стабильности композитов. В обзорном плане изложены обширные литературные данные о взаимодействии жидких металлов с окислами, полученные при изучении процессов изготовления керметов и пропитки усов расплавом. Цель этого обзора —обобщить имеющуюся информацию о смачивании окислов жидкими металлами и вывести основные закономерности. Далее проанализировано соотношение между смачиванием и формированием связи в композитах. Применительно к режимам изготовления и условиям службы композитов рассматриваются диффузионная сварка и твердофазные реакции, причем более подробно— кинетика реакций металл — окисел и характеристики поверхности раздела. Глава завершается анализом имеющихся литературных данных о механических свойствах, чувствительных к состоянию поверхностей раздела. Этот анализ ограничен несколькими металлическими системами, упрочненными окислами, которые изучены в настоящее время.  [c.308]

В основе технологических процессов пайки лежит контактное взаимодействие на границе жидкого металлического припоя и твердого тела. Механизм этого взаимодействия может быть исследован путем изучения кинетики растекания расплавов по различным твердым поверхностям.  [c.65]

Затем наступает второй этап, когда определяющую роль вновь начинает играть кинетика реакции, на этот раз Р1, при этом продуктом реакции является более бедное кислородом соединение — СО. Это обусловлено тем, что подходящий за счет диффузии кислород в состоянии связать почти вдвое больше углерода, образуя СО вместо СО2. Поэтому в каком-то диапазоне Ту, количество подводимого окислителя превышает кинетические возможности реакции горения на поверхности Лишь при температуре поверхности порядка 2700 К при медленной кинетике реакции и 1800 К при быстрой окончательно наступает режим горения, контролируемого диффузией. Диффузионное горение относится к случаю сильного взаимодействия потока газа с материалом, когда необходимо учитывать характер течения в пограничном слое, скорости образования отдельных компонент, размер и форму тела, величины коэффициентов диффузии, а также поведение всех возможных продуктов реакции, число которых достигает десятка. Тем не менее именно на примере графита впервые было показано, что при диффузионном химическом взаимодействии механизм процесса можно приближенно описать простым выражением  [c.174]

Исследования в области механики контактных взаимодействий, химических и диссипативных процессов в поверхностных и приповерхностных слоях трущихся материалов показывают, что материал в указанных зонах в процессе трения резко изменяет свое физическое состояние, меняя механизм контактного взаимодействия. Происходят существенные изменения в суб- и микроструктуре приповерхностных микрообъемов. Изучение кинетики структурных, фазовых и диффузионных превращений, прочностных и деформационных свойств активных микрообъемов поверхности, элементарных актов деформации и разрушения, поиск численных критериев оптимального структурного состояния, оценок качества поверхности должны быть фундаментальной основой в поисках материалов и сред износостойких сопряжений. В настоящее время исследованы закономерности распределения пластической деформации по глубине поверхностных слоев металлических материалов, кинетика формирования вторичной структуры, процессы упрочнения, разупрочнения, рекристаллизации, фазовые переходы, которые, в свою очередь, зависят от внешних механических воздействий, состава, свойств трущихся материалов и окружающей среды. Важное значение в физике поверхностной прочности имеет определение связи интенсивности поверхностного разрушения при трении и величины развивающейся пластической деформации. Сложность указанной проблемы заключается в двойственности природы носителей пластической деформации. Дислокации, дисклинации и другие дефекты структуры являются концентраторами напряжений, очагами микроразрушения. В то же время движение дефектов (релаксационная микропластичность) приводит к снижению уровня напряжений концентратора, следовательно, замедляет процесс разрушения. Условия деформации при трении поверхностных слоев будут определять преобладание одного из указанных механизмов, от которого будет зависеть интенсивность поверхностного разрушения. Межатомный масштаб связан с характерным сдвигом, производимым элементарными носителями пластической деформации (дислокациями). В легированных металлических системах величина межатомного расстоя-  [c.195]


Появление новых методов и средств определения структуры, строения и состава поверхностных слоев, возникающих в процессе трения, позволяет расширить научные и прикладные исследования в области граничной смазки, химико-физических свойств присадок к маслам. Важным является получение тонких поверхностных пленок на поверхностях трения под влиянием контактных давлений, температур, временного фактора, химического взаимодействия материалов и смазочных сред, при воздействии окружающей среды. На всех стадиях формирования граничных слоев решающее влияние имеют адсорбционные процессы, кинетика образования и разрушения поверхностных пленок. Целесообразно получить реологические уравнения для граничных смазочных слоев при высоких давлениях, скоростях сдвига, температурах с учетом анизотропии свойств.  [c.197]

Тепловой режим конструкций энергетических устройств из композитных материалов (КМ) в ряде случаев характеризуется интенсивным теплообменом на поверхности, высокими скоростями изменения температуры во времени и большими градиентами температур внутри этих конструкций. При этом в материале возникают нелинейные физико-химические явления, которые часто ведут к снижению несущей способности конструкций. К ним относятся структурные фазовые превращения, взаимодействие компонентов, расслоение, температурные и структурные напряжения, изменение теплофизических, упругих, прочностных и других характеристик, реологические эффекты. Расчет предельного состояния конструкции, находящейся в таких условиях, должен включать описание процессов теплопроводности, термо- и вязкоупругости, кинетики химических реакций, аэродинамики фильтрующих газов, диффузии, а также требует из-за анизотропии свойств определения большого количества теплофизических и механических характеристик материалов. Точный расчет с учетом изменения характеристик от температуры весьма сложен, так как связан с решением нелинейных интегродифференциальных уравнений с переменными коэффициентами. На достоверность его результатов большое влияние оказывает трудность представления и выбора достаточно полно отражающей действительность модели процесса, связанного с необратимыми явлениями.  [c.7]

В работах [223, 224] указывалось на изменение характера контраста электронно-микроскопического и поляризационно-оптического изображений дислокаций, перпендикулярных свободной поверхности, в связи с обрезанием поля упругих искажений у ядра дислокаций вблизи поверхности. Замечено также, что ячеистая дислокационная структура и размеры ячеек [225], процессы рекристаллизации [226] также зависят от толщины объекта. Имеется некоторое различие и в кинетике перемещения границ. Высказывается предположение [218], что динамические свойства дислокаций, такие, как размножение, движение и взаимодействие, в сильной степени зависят от толщины фольги.  [c.106]

Структурно-имитационное моделирование на ЭВМ процессов разрушения композитов опирается на определенные представления об отдельных актах микроразрушения, их последовательности и взаимодействии. Эти представления складываются в первую очередь на основе экспериментального изучения структурных изменений в материалах на разных стадиях нагружения, а также на основании фрактографического анализа, т.е. анализа поверхностей разрушения как композита в целом, так и его отдельных компонентов. Информацию о кинетике накопления повреждений получают также путем регистрации сигналов акустической эмиссии, малоуглового рассеяния рентгеновских лучей (в полимерных композитах) и другими экспериментальными методами [90, 91, 95, 172, 181, 184, 185].  [c.19]

Изучение кинетики процесса взаимодейстпия серы с поверхностью металла показало, что при определенной температуре интенсивность взаимодействия серы с металлом увеличивается во времени, достигая некоторого предельного значения, соответствующего не изменяющемуся со временем уровню активности. С повышением температуры увеличивается время, необходимое для достижения предельного значения.  [c.68]

Необходимо также подчеркнуть, что введение ОДА существенно влияет на кинетику фазовых переходов, что в свою очередь приводит к изменению газодинамических характеристик решеток Б области спонтанной конденсации в зоне Вильсона. Положительные эффекты при введении ОДА в поток парокапельной структуры обусловлены физически различными факторами. Гидрофобизирую-щее вещество приводит к уменьшению размеров капель, влияет на их траектории и деформацию в конфузорном течении в криволинейном канале, коэффициенты сопротивления, процессы коагуляции,, дробления и взаимодействия с пленками. Широко распространенное мнение, согласно которому уменьшение размеров капель обусловливает более значительные затраты кинетической энергии несущей фазы на их ускорение, не учитывает влияния сопутствующих процессов деформации, дробления и коагуляции капель, протекающих различно в потоке с добавками ОДА и без гидрофобизатора. Учитывая явления на границе раздела фаз (менее интенсивные волновые процессы на поверхности пленок, затрудненный срыв капель с пленок и значительное количество влаги, выпадающей в пленки), можно утверждать, что уменьшение диаметров капель не приводит к увеличению затрат кинетической энергии на ускорение дискретной фазы.  [c.310]

При изучении кинетики процессов изотермического и неизотермического растекания и затекания припоев в зазор методом киносъемки на примере меди п легкоплавких припоев при флюсовании было установлено [3, 22], что в условиях иеизотермического контакта паяемого металла и химически активно взаимодействующего с ним припоя последний после расплавления смачивает паяемую поверхность лишь спустя некоторое время и начинает растекаться по поверхности паяемого образца в процессе дальнейшего нагрева. Контактный угол смачнваиия 0 при этом резко снижается. При нагреве образца до температуры пайки и последующем охлаждении краевой угол смачивания остается постоянным, а перед затвердеванием припоя может несколько возрастать (рис. 13). При растекании припо.я, активно взаимодействующего с паяемым металлом наблюдается образование ореола из компонентов припоя и вытесненного из флюса металла, а непосредственно перед фронтом при-  [c.63]

Смачивание основного металла расплавленным припоем создает условия для растворно-диффузионных процессов по границе твердой и жидкой фаз. Поскольку на этой границе реакции идут в гетерогенной среде между металлами, находящимися в различных агрегатных состояниях, то развитие реакций связано не только с химическими превращениями, но и с переносом веществ из глубины фаз к поверхности взаимодействия, а также с удалением продуктов взаимодействия из зоны реакции. Кинетика этих реакций обусловлена диффузией. Скорость процессов взаимодействия между основньпм металлом и расплавленным припоем зависит от интенсивности переноса входящих в их состав компонентов в зону контакта меладу ними, активности взаимодействия и удаления продуктов реакции. Время формирования спая определяется скоростью прохождения этих стадий процесса. Чем медленнее протекают диффузионные процессы, тем продолжительнее время формирования спая. Растворно-диффузионный спай может быть образован металлами дающими неограниченные растворы, огра-  [c.117]

При более строгом рассмотрении важно учитывать взаимодействие областей, растущих из разных зародышей. Две такие области, сталкиваясь друг с другом в процессе роста, могут объединяться с образованием единой области, как это часто происходит с жидкими каплями, образующимися из пара, или же они могут снова разделиться, если первичная фаза является жидкой. В случае превращений в твердом состоянии между двумя такими областями при соприкосновении возникает общая поверхность раздела, на которой рост прекращается. Соответствующие-изменения кинетики процесса, учитывающие такие взаимопомехи растущих областей, были впервые рассмотрены Джонсоном и Мелом [43], а также Аврами II, 2],  [c.272]


Полезную информацию о механизме коррозионных процессов, протекающих под адсорбированными пленками влаги, внесли исследования Ройха [79]. Автор изучал кинетику роста поверхностных слоев на алюминии, магнии, цинке, железе, кадмии, а также на ряде сплавов во влажной атмосфере с применением фотографического метода [79]. Этот метод основан на регистрации количества молекул перекиси водорода, выделяющейся при взаимодействии поверхности металла с влажным воздухом. Сравнение кинетики выделения перекиси водорода и роста окисной пленки на металлах во влажном воздухе показало, что между количеством вы-  [c.164]

В связи с кинетикой процесса внещнего трения необходимо рассмотреть три возможных случая взаимодействия контактирующих поверхностей статический контакт поверхностей или состояние покоя предварительное смещение или начало движения контакт при установившемся движении.  [c.100]

Анализ имеющейся информации свидетельствует об отсутствии единого мнения у специалистов по данному вопросу. Так, например, в работе [34] при построении теоретической модели процесса горения А.Д. Марголин исходил из взаимодействия двух стадий горения ...скорость горения большинства поро-хов...определяется главным образом процессами, протекающими в реакционном слое конденсированной фазы (первая стадия) и в смежной с ней стадии над поверхностью конденсированной фазы (вторая фаза), где горит дымогазовая или газовая смесь . Путем математических преобразований он получил выражение для V, зависящего от VI в первой стадии, и Уг - во второй, а также коэффициентов 1 и аг, отражающих суммарную кинетику процесса и закономерности массо- и теплообмена  [c.61]

Исследование способов, позволяющих замедлить рост зоны взаимодействия, является очень важным аспектом проблемы разработки практически ценных композитов. Как указывалось выше, матрицы, представляющие иаибольший практический интерес, обычно более реакционноспособны, чем матрицы, на примере которых демонстрировали справедливость теорий композитов. Проблема дополнительно осложняется тем обстоятельством, что композиты с металлической матрицей особенно нужны для эксплуатации при повышенных температурах. Исследование кинетики диффузионных процессов и выяснение механизмов диффузии являются основными условиями для построения строгой теории поверхностей раздела и для решения с ее помощью проблемы получения требуемых характеристик поверхности раздела. Исследование процессов и механизмов диффузии необходимо проводить применительно к той области толщин реакционной зоны, которая характерна для практически ценных композитов часто это означает, что объектом исследования должны стать зоны толщиной менее 1 мкм. Рост реакционной зоны, особенно в характерных для композита условиях стеснения, нередко приводит к изменению механизма диффузии. Рэтлифф и Пауэлл [30], например, наблюдали изменение механизма диффузии при взаимодействии между титановыми сплавами и карбидом кремния при толщине зоны 10 мкм и связали его с появлением новых продуктов реакции. Хотя столь большая толщина находится за пределами интересующей нас области, эти данные подтверждают изменение механизма диффузии на поздних стадиях роста реакционной зоны. Впрочем, могут иметь место и более тонкие изменения, обусловленные увеличением концентрации вакансий.  [c.29]

Исследование закономерностей трения в вакууме привело к пониманию того, что при данной совокупности конкретных условий на процессы трения и схватывания заметное влияние оказывают не только степень разрежения, но и такие факторы, как состав остаточных газов, концентрация активных составляющих, кинетика взаимодействия газов с поверхностью трения [4, 5]. Поэтому при исследовании влияния вакуума на фрикционные свойства материалов перспективны непрерывные масс-спектрометри-  [c.27]

Большой интерес представляет влияние на кинетику старения добавки третьего элемента. Возможный эффект на начальных стадиях будет, по-видимому, зависеть от взаимодействия этого элемента с вакансиями. Так, было показано (по изменению р), что добавка небольшого количества Sn (0,006%) замедляет образование зон в сплаве А1 + 1,7% Си. Оказалось, что энергия активации процесса в тройном сплаве составляет 1,Ы0 дж (—0,7 эв), а в двойном 0,8-10 дж (0,51 эв). По-видимому, энергия связи между вакансиями и атомами олова на 0,32-10 дж (0,2 эв) больше, чем между вакансиями и атомами меди олово отвлекает от меди вакансии, необходимые для образования зон. Показано, что индий задерживает образование зон Г—П и фазы в", но способствует образованию частиц 6. Последнее объясняется, изменением состояния поверхности раздела матрицы и промежуточной фазы и уменьшением размера критического зародыша (Силкок). Известно также сильное  [c.241]

Коррозионное взаимодействие металла с агрессивной жидкой средой включает в себя такие стадии, как удаление продуктов коррозии, доставка деполяризатора и т. д. Эти стадии чувствительны к перемешиванию среды и в соответствии с тем, какую роль они играют в кинетике всего процесса, гидродинамические параметры среды вокруг загдищаемой поверхности могут оказывать самое различное влияние на пассивное состояние этой поверхности.  [c.24]

Резюмируя в целом состояние работ по смазочным материалам с дисперсными добавками, следует отметить медленное внедрение результатов лабораторных испытаний. Системы с дисперсными добавками являются сложными физико-хими-ческими объектами, а это в свою очередь требует учета многих факторов взаимодействия наполнителя со средой и поверхностями трения. Необходима стабилизация свойств этих систем, у которых удельная поверхность наполнителя очень велика, что способствует проявлению каталитического действия металлов на процессы окисления, старения и деструкции смазочной среды. Аналитические методы описания массопереноса в таких смазочных материалах еще далеки от совершенства и имеются пока лишь первые приближения в оценке кинетики осаждения веществ из коллоидных смазочных материалов на поверхности контакта [86]. Указанные обстоятельства требуют дальнейшей напряженной работы прежде всего специалистов по разработке смазочных материалов, химиков-технологов в тесном контакте с трибологами, изучающими процессы граничной смазки.  [c.73]

Кинетика перераспределения дефектов под действием диффузионных процессов определяется подвижностью дефектов при данной температуре. Обычно коэффициент диффузии вакансий значительно выше, чем междуузельных атомов, и их подвижность суш,ественна даже при комнатной температуре. По мере накопления точечных дефектов становятся существенными процессы их взаимодействия, в частности, коалесцендия с образованием микропор, вакансионных кластеров, дислокационных нетель [74]. С появлением дефектов строения связано возникновение напряжений в ионно-легированном слое, изменение коэффициентов диффузии, механических свойств твердых тел и т.д. Неравновесная концентрация дефектов строения и высокий уровень напряжений могут изменять характер упорядочения атомов, вызывать аморфизацию поверхностного слоя или фазовые превращения типа мартенситного. Профиль распределения радиационных дефектов в основном повторяет профиль распределения легирующих ионов. Однако максимум концентрации располагается ближе к поверхности, так как при низкой энергии ионов энергии, передаваемой в упругих столкновениях, недостаточно для образования дефектов строения. Распределение числа смещенных атомов для условий легирования, соответствующих данным рис. 3.2, приведены на рис. 3.4.  [c.82]


Смотреть страницы где упоминается термин Кинетика процесса взаимодействия поверхностей : [c.9]    [c.78]    [c.26]    [c.375]    [c.6]    [c.67]    [c.106]    [c.132]    [c.331]    [c.75]    [c.248]    [c.424]    [c.164]    [c.237]   
Смотреть главы в:

Трение, смазка и износ  -> Кинетика процесса взаимодействия поверхностей



ПОИСК



Взаимодействие кинетика

Взаимодействие поверхностей

Кинетика

Кинетика процесса

Процесс взаимодействия



© 2025 Mash-xxl.info Реклама на сайте