Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Адсорбция ингибиторов специфическая

Исследование анодной реакции ионизации металла (рис. 5,15) показало, что малые добавки хотя и смещают потенциал в поло-л<ительную сторону, однако поляризуемость электрода меняется мало. Все это указывает на то, что сдвиг потенциала в положительную сторону обусловлен, очевидно, в основном изменением кинетики катодного процесса. Большие концентрации ингибитора (1—2 г/л) способствуют сильной анодной поляризации электрода, что связано со специфической адсорбцией ингибитора и упрочнением химической связи по мере смещения потенциала в положительную сторону.  [c.169]


Можно предполагать, что в этом случае возможна не только специфическая адсорбция ингибитора, но и адсорбция продуктов взаимодействия ингибитора с образующейся в кислоте солью металла. Вследствие этого действие ингибитора становится сходным со своеобразным пассивированием металла. В результате такого пассивирования реакция металла с кислотой может происходить только за счет диффузии ионов кислоты через узкие поры образовавшегося защитного слоя. При этом кинетика процесса коррозии приобретает диффузионный характер, чем и объясняется низкий температурный коэффициент реакции . Вероятно, что при более высокой температуре количество вещества, пассивирующего поверхность, больше, чем при низкой, так как образование защитной пленки протекает быстрее, чем ее растворение.  [c.36]

Замедление процесса коррозии при введении индивидуальных адсорбционных ингибиторов связано, главным образом, с изменением в строении двойного электрического слоя, с возникновением дополнительного положительного адсорбционного скачка потенциала и уменьшением свободной поверхности корродирующего металла в результате экранирования части ее адсорбированным ингибитором. Скопление ингибитора на поверхности корродирующего металла обусловлено преимущественно электростатической адсорбцией, а также специфической адсорбцией I рода, зависящей, в основном, от свойств частиц ингибитора и от заряда металла [12].  [c.36]

Таким образом, приходим к заключению, что для решения вопроса об эффективности органических ингибиторов молекулярного типа, т. е. веществ, не распадающихся на ионы, весьма важным, а иногда и решающим является положение стационарного потенциала по отношению к потенциалу нулевого заряда. Если стационарный потенциал не слишком отдален от точки нулевого заряда, то ингибитор, обладающий способностью специфической адсорбции, может адсорбироваться поверхностью металла и оказывать защитное действие. При достаточном же удалении стационарного потенциала от точки нулевого заряда в положительную или отрицательную сторону ожидать благоприятного влияния органического ингибитора нет основания.  [c.26]

Возникновение скачка потенциала в окисле происходит, вероятно, по следующему механизму при специфической адсорбции исследованных ингибиторов с общим анионом типа на по-  [c.81]

Следует, однако, заметить, что отмеченная выше закономерность соблюдается не всегда многие ингибиторы адсорбируются в широкой области потенциалов, в том числе и на одноименно заряженной с ингибитором поверхности. Изложенные выше теоретические соображения учитывают лишь электростатическую адсорбцию, в то время как многие ингибиторы адсорбируются за счет специфической адсорбции, а также химической. При наличии п-электронного взаимодействия между органическим веществом и поверхностью металла адсорбция возможна как при положительных, так и отрицательных зарядах поверхности, а при химической адсорбции электростатическое взаимодействие играет отнюдь не главную роль.  [c.132]


В то же время для большинства серусодержащих органических веществ такого параллелизма между защитными свойствами соединений по отношению к железу и х поверхностной активностью на -ртути не обнаружено. Объясняется это специфическим взаимодействием электронов атомов серы с электронами незаполненных < -орбиталей железа, которое приводит к значительному упрочнению связи ингибиторов с металлом. В пользу этого утверждения свидетельствует необратимость адсорбции серусодержащих соединений на железе и увеличение адсорбции с ростом температуры. В отличие от адсорбции азотсодержащих соединений специфическая адсорбция серусодержащих соединений зависит не только от свойств адсорбированных частиц, но и от химической природы металла.  [c.138]

Очень многие исследователи объясняют действие ингибиторов отравлением поверхности металла вследствие образования на ней защитного слоя за счет адсорбции (называемой в старых работах просто физической адсорбцией, в более поздних— специфической адсорбцией, которая, однако, трактуется довольно неопределенно ).  [c.46]

Как показала М. М. Глейзер, повышенной восприимчивостью к действию ингибиторов коррозии обладают металлы, относящиеся по природе водородного перенапряжения к группе, характеризующейся либо замедленной рекомбинацией водородных атомов, либо соизмеримым торможением рекомбинации и разряда водородных ионов (Fe, Ni, Ti). Адсорбция ингибиторов коррозии на поверхности металлов этой группы происходит за счет как электростатических, так и специфических сил. Металлы этой группы, обладая неукомплектованными электронами внутренними Зй-подоболочками, склонны также к повышенной хемосорбции ингибиторов на своей поверхности.  [c.348]

Адсорбция ингибиторов на поверхности металла может иметь различную природу. Различают физическую, химическую и специфическую адсорбцию. Под физической адсорбцией понимают явление концеитрировання вещества из объема фаз на поверхности металла, вызванное электростатическими или дисперсионны- Ч силами, под химической адсорбцией — то же явление концентрирования вещест-на поверхности металла, но обуслов- 1ениое нх химическим взаимодействием изменением или разрушением старых и Образованием новых химических связей, приводящих к образованию поверхност- bix химических соединений. Физическая  [c.19]

Было установлено, что существует параллелизм в изменении ингибирующей способности органических соединений и их адсорбируемости. С увеличением степени заполнения поверхности металла ингибитором их ингибирующее действие возрастало. В ряде работ были изучены закономерности адсорбции ингибиторов связь между ингибирующи.м действием, адсорбцией и молекулярной структурой ингибиторов, их природой и физнко-химическими характеристиками. Установлено, что защитные свойства органических ингибиторов в значительной степени определяются природой адсорбции (хемосорбция, физическая или специфическая адсорбция) и показано, что наилучшими ингибиторами являются те, которые образуют хемосорбционную связь металл — атом азота. Как известно, информацию о механизме адсорбции, природе сил и связей, удерживающих адсорбированные молекулы на поверхности металла, можно получить, исследуя изотермы адсорбции. Вид адсорбционной изотермы тесно связан с механизмом адсорбции.  [c.23]

По своей природе ингибиторы коррозии бывают ионными [катионного типа — катапин, ЧМ анионного типа — тиомочевина S (N112)2] или молекулярными соединениями (например, антра-ниловая кислота). Ингибиторы адсорбируются на поверхности корродирующего металла или электростатически (адсорбция ионов и полярных молекул за счет кулоновских сил при соответствующем знаке заряда поверхности металла) или специфически (адсорбция поверхностно активных ионов и молекул за счет молекулярных ван-дер-ваальсовских сил), или химически (хемосорбция ионов и молекул за счет валентных сил химического сродства) возможна также адсорбция их вследствие одновременного действия разных сил.  [c.345]


Причини, по которым данное соединение является хорошим ингибитором для железа и плохим для цинка или наоборот, могут быть связаны также со специфическим электронным взаимодействием полярных групп с металлом (хемосорбцией). Последний фактор в определенных случаях более важен, чем стерический, определяющий возможности для плотнейшей упаковки адсорбированных молекул. Это можно проиллюстрировать очень значительным ингибирующим действием оксида углерода СО, растворенного в соляной кислоте, на коррозию в ней нержавеющей стали [36] (степень защиты 99,8%, в 6,3 М растворе НС1 при 25 °С). Об этом же свидетельствует защита железа, обеспечиваемая малым количеством иодида в разбавленных растворах H2SO4 [35, 37, 38]. Как СО, так и иодид хемосорбируются на поверхности металла, препятствуя в основном протеканию анодной реакции [39]. Кеше [40] показал, что 10" т KI значительно лучше ингибирует железо в 0,5 т растворе NajSOi с pH = 1 (степень защиты 89 %), чем в растворе с pH = 2,5 (степень защиты 17 %). Это показывает, что адсорбция иодида в этом интервале pH зависит от значения pH  [c.270]

Следует отметить, что изложенные представления учитьтают лишь электростатическую адсорбцию, однако многие ингибиторы адсорбируются за счет специфической и химической адсорбции. При наличии я-электронного взаимодействия между органическим веществом и поверхностью металла адсорбция возможна как при положительных, так и при отрицательных зарядах поверхности.  [c.145]

Хемосорб1Щя ингибиторов существенно зависит и от природы металла. Например, гетероциклические амины, адсорбируясь на железе, являющемся переходным металлом, образуют прочные хемосорбционные пленки благодаря взаимодействию тг-электронов молекулы ингибитора с незавершенными Зб/-уровнями железа. В непереходных металлах такого взаимодействия не происходит, хотя положительно заряженная поверхность металлов в некоторой мере может ассимилировать, например, 7г-электроны и создавать тем самым специфическую адсорбцию дополнительно к электростатической.  [c.146]

Следует отметить, что при известных условиях адсорбция может привести к пассивации и тогда, когда ингибитор не восстанавливается. В этом случае, однако, требуется либо присутствие в коррозионной среде каких-нибудь других окислителей, либо наложения-некоторой анодной поляризации. Примером могут служить бензоат-ионы, которые при определенных условиях переводят металл, в частности железо, в пассивное состояние и обеспечивают его защиту от коррозии [14 194 195 205 239]. При этом оказывается, что смещение потенциала в положительную сторону и пассивное состояние металла достигаются лишь в присутствии растворенного кислорода и при определенной минимальной степени покрытия поверхности металла ингибитором. Чем положительнее потенциал образца, тем меньшие объемные концентрации ингибитора требуются для достижения такой степени покрытия. После того, как металл запассивирован на его поверхности не обнаруживается значительных количеств бензоата. Можно предположить поэтому, что при смещении потенциала в положительную сторону и формировании оксидной пленки относительно слабо связанные с поверхностью ионы бензойной кислоты (их удельный заряд мал, а специфическая адсорбиру-емость выражена слабо) вытесняются либо ионами гидроксила, обладающими большим удельным отрицательным зарядом и повышенной специфической адсорбируемостью, либо атомами кислорода, либо растущей пленкой оксида.  [c.51]

Все это означает, что для проявления специфической адсорбции аниона Вг на вновь образующейся поверхности металла необходимо определенное время, тогда как в случае ингибитора АГМИБ этого не требуется. Следовательно, хотя защитные свойства ингибитора АГМИБ обусловлены совместным действием органи- ческого катиона и аниона Вг" (синергетический эффект), стабиль-  [c.150]

С другой стороны, эффективными ингибиторами сероводородной коррозии могут быть соединения, которые, хотя и не вступают в химическое взаимодействие с сероводородом, но способны адсорбироваться на поверхностном слое сероводорода (рис.8,II). В их присутствии происходит блокировка (закрытие) слоя сероводорода молекулами или ионами ингибитора. Такого эффекта можно ожидать, Б частности, если соединение дает органические катионы, которые при отрицательном заряде поверхности корродирующего металла будут адсорбироваться на слое сероводорода за счет электростатической или специфической адсорбции. Стимулирующее действие сероводорода при этом устраняется или значительно уменьшается. Оно устраняется или существенно уменьшается и в том случае, если молекулы ингибитора вытесняют с поверхности адсорбированный сероводород. Если же молекулы или ионы ингибитора, адсорбированные на поверзЯяости металла в отсутствие сероводорода, вытесняются сероводородом с по-  [c.75]

Если предположить, что адсорбция происходит только за счет электростатического взаимодействия катионов ингибитора с отрицательно заряженной поверхностью металла через слой молекулярного сероводорода, то поскольку слой сероводорода может только ослабить это взаимодействие, эффективность защиты в этом случае должна была бы несколько снизиться, Следует допустить поэтому наличие специфической адсорбции катионов ингибитора на поверхностном слое сероводорода. Адсорбируясь на слое сероводорода, катионоактивный ингибитор создает энергетический барьер за счет -потенциала, который препятствует подводу ионов гидроксония. Ингибитор таким образом блокирует молекулы сероводорода, уменьшая образование ионов сульфония. Сероводород при этом играет роль не стимулятора коррозии, а ее ингибитора(см.рис.8), Специфический характер связи между споем сероводорода и катионами ингибитора подтверждается температурной зависимостью ингибирующего действия (см.рис.24),  [c.97]


В начальный период этого цикла исследований основное внимание было обращено на выяснение роли адсорбции в процессах ингибирования. На основании концепции приведенной шкалы потенциалов было показано, что при коррозии металлов ингибирующее действие органических веществ меняется симбатно с их поверхностной активностью на ртути, если все эти измерения проведены при одинаковых ф-потенциа-лах, т. е. при одинаковых зарядах поверхности металла. Этим был доказан адсорбционный механизм действия большинства органических ингибиторов и внесен рациональный элемент в поиски вероятных ингибиторов. Было введено понятие о специфической адсорбции I и II родов. Специфическая адсорбция I рода определяется природой адсорбирующихся частиц природа металла здесь проявляется главным образом через его нулевую точку. Это позволило на основании адсорбционных измерений, проведенных на одном металле, предвидеть адсорбционное поведение того же вещества на других металлах. Так, в частности, оказалось возможным, используя приведенную шкалу, оценивать области потенциалов, внутри которых на данном металле следует ожидать адсорбцию и влияние органических веществ на коррозионные и другие электрохимические процессы. Подобный же подход был впоследствии плодотворно использован и в работах Лошкарева по электроосаждению металлов. Недавно в работах московских и тартусских электрохимиков были получены результаты, дающие экспериментальное качественное подтверждение этой концепции. Следует, однако, подчеркнуть, что она оправдывается для оиределенной, хотя и широкой группы ингибиторов (азотсо-  [c.135]

Специфическая адсорбция определяется в значительной степени свойствам адсорбирующихся частиц и в меньшей — природой металла [8]. Так, например специфическая адсорбция ионов галоидов наблюдается для большинства метал лов, многие ингибиторы, содержащие в молекуле я-связи, неподеленную пар электронов, также адсорбируются специфически.  [c.20]

Для физической адсорбции характерна зависимость ее от заряда поверхио сти металла. Для специфической адсорбции такая зависимость менее выражена а химическая — практически не зависит от заряда поверхности металла. Многи( ингибиторы адсорбируются на большинстве металлов физически, поэтому зна ние величины заряда поверхности имеет большое значение для предсказани5 эффекта ингибирования. Для оценки возможности адсорбции органических инги <Зиторов в условиях коррозии ряда металлов особое значение имеет потенцпа нулевого заряда.  [c.20]

Для большинства специфически адсорбирующихся органических ингибиторов наблюдается корреляция между снижением поверхностного натяжения (До) на ртути, характеризующей адсорбцию, и концентрацией ингибитора (С)  [c.22]

Таким образом, благодаря специфической адсорбции неорганических ингибиторов пассивация, как уже указывалось, может быть достигнута без восстановления самих ингибиторов. Обнаруженный эффект памяти у стали после воздействия ингибиторов указывает на возникновение электрического поля в окисле. Подтверждением выдвигаемого механизма могут служить данные по электрохимической пассивации стали с помощью внешней анодной поляризации с одновременным изменением КРП после извлечения электрода из электролита. Было обнаружено, что при поляризации стали в интервале потенциалов от —0,4 до +0,55 В кривая фэл=/(А1 к) внешне сходна с обычной потенциостатической кривой фэл=f(tKopp), где г корр — плотность тока коррозии, определенная по потерям массы (рис. 2,28).  [c.82]

Тогда уменьшение электронной плотности на адсорбционном центре ингибитора должно снижать специфическую адсорбцию. От взаимодействия этих двух факторов и зависит ингибирующий эффект. Падение защитного эффекта аминов при снижении нук-леофильности заместителей (от аСО до а = 0) объясняется, вероятно, одновременным изменением физической адсорбции и поверхностной концентрации специфически адсорбированных частиц. Насколько это объяснение правомерно, сказать трудно, так как в основу рассуждений авторов положено, что потенциал нулевого заряда железа равен нулю, а это, как было выше указано, оспаривается многими исследователями не без оснований.  [c.150]

Однако связывать это уверенно с реакцией восстановления молибдата пока нельзя, поскольку никаких перегибов на кривых, которые бы указывали на появление нового процесса деполяризации, не отмечено. Кривая катодной поляризации смещается б положительную сторону, по-видимому, благодаря пассивации поверхности, возникающей вследствие специфической адсорбции, Влияние молибдата йг натрия на анодное растворение а не восстановления ингибитора. карбонашо-бикарбо-  [c.170]

Тормозащее действие окислителей на коррозионный процесс в конечном итоге определяется переходом защищаемого металла в устойчивое пассивное состояние. Однако механизм действия окислительных ингибиторов более сложен, чем непосредственное окисление поверхности, как предполагалось ранее. Пассивирующее действие окислителя помимо величины его окислительно-восста-новительного потенциала зависит также от характера специфической адсорбции окислителя на поверхности металла, величины тока обмена окислительной реакции, величины перенапряжения катодному процессу деполяризации данного окислителя и других причин. Подтверждение этого — установленный экспериментальный факт, что эффективность действия окислителей, как правило, не связана простой зависимостью с их окислительно-восстановительным потенциалом.  [c.184]

Состав раствора, в котором находится органический ингибитор наводороживания, влияет на эффективность его действия. Даже при условии отсутствия разряда и выделения на поверхности металла катода иных катионов, кроме водорода, свойства поверхности металла катода могут сильно изменяться в растворах различных электролитов. Например, в растворах кислот, содержащих специфически адсорбируемые анионы (С1 , Вг , J-, HS и др.), адсорбционная способность металла катода сильно изменяется, что показано в работах А. Н. Фрумкина, 3. А. Иофа и др. исследователей [611—613]. Согласно представлениям электрохимиков школы акад. А. Н. Фрумкина, в присутствии анионов галоидов происходит смещение потенциала нулевого заряда железа (фд=о) в сторону более положительных значений, а также образование на поверхности катода ионных пар из адсорбированного аниона и катиона органического соединения (ингибитора коррозии). Это улучшает адсорбцию и ингибирование коррозии органическими веществами катионного типа (трибензиламнн).  [c.245]

Специфическая адсорбция, овязанн1ая, в первую очередь, со свойствами адсорбирующихся частиц и в значительно меньшей степени (если исключить величину заряда)зависящая от природы металла, получила название специфической адсорбции первого рода [11]. Она свойственна многим ингибиторам коррозии металлов. Некоторые соображения и факты, указывающие на широкую распространенность такого вида адсорбции, приводятся ниже.  [c.37]

Кроме рассмотренных азотсодержащих соединений, можно указать некоторые другие ингибиторы, жоторым также свойственна специфическая адсорбция первого рода. Так, яапример, при ингибировании кислотной коррозии цинка анионами С1 , Вг и [63] связь между величинами декрементов их поверхностного натяжения на ртути (при фне=фс. zn) и коэффициентами торможения коррозии цинка в определенной области концентраций (рис. 41, 37) также может быть представлена уравнениями (6), (18), (21) и (22). Величины onsts уравнений (21), (22) аказываютоя ори этом да>статочно  [c.69]

Изменение скоростей реакций восстановления НдО" и ионизации металла многие исследователи связывают в первую очередь с изменением строения двойного электрического слоя [1, 2]. В соответствии с теорией замедленного разряда, катионоактивные вещества, сдвигающие г ) -потенциал в положительную сторону, должны действовать в направлении уменьшения скоростей катодной и анодной реакций. Влияние анионоактивных веществ должно проявляться в обратном направлении. Эти выводы из теории подтверждаются рядом экспериментальных данных, полученных на ртутном электроде [1]. Для стального электрода действие веществ катионного типа — ингибиторов коррозии — также можно было бы связать с изменением г )] -потенциала. Однако только этим нельзя объяснить результаты исследования [3]. В частности, только изменением т 51-потенциала трудно объяснить усиление действия катионоактивных веществ с увеличением длины алифатической цепи молекул (так как при этом г )1-потепциал не должен изменяться), а также и влияние неионогенных веществ (так как возможное изменение ф -потенциала при этом невелико, а эффект торможения реакций значителен). Кроме того, невозможно совместить выводы из теории об увеличении скоростей реакций при специфической адсорбции анионов с обнаруженным автором [3 и другими исследователями замедляющим действием ионогенных добавок при растворении железа в серной и соляной кислотах.  [c.129]


Анион органического вещества, имеющий небольшие размеры, действительно ускоряет указанные реакции в этом случае он не ингибитор, а стимулятор коррозии. Анионоактивные вещества с длинной гидрофобной цепью могут быть, наоборот, ингибиторами коррозии, потому что, во-первых, они в растворе кислоты уподобляются веществам неионогенного типа, механизм действия которых уже рассмотрен во-вторых, вещества с более длинной гидрофобной цепью создают в приэлектродном слое более слабое электрическое поле, поэтому влияние их на изменение потенциала в реакционной зоне ослабевает. Как видно из рис. 3, б (кривая 3) в случае адсорбции анионов с более длинной гидрофобной ценью скачок потенциала в реакционной зоне уменьшается (г зР << г 5Р). Следовательно, в соответствии, с теорией замедленного разряда, уменьшаются скорости электрохимических реакций коррозионного процесса. Поэтому эффективность действия таких ингибиторов увеличивается. В то же время, как показали исследования [7, 8], в отличие от анионов органичен ских веществ ионы галогенов, хотя и имеют небольшие размеры, все-таки являются не стимуляторами, а ингибиторами коррозии стали в серной, хлорной и соляной кислотах. Объяснение наблюдаемому явлению дано в работе [8]. Авторы предположили, что при специфической адсорбции анионов на поверхности стали образуется хемисорбированное соединение атомов железа с этими ионами. Диполи этих соединений располагаются своим отрицательным концом в сторону раствора. В соответствии с рассмотренной схемой адсорбции ионов галогенов я з1-потенциал сдвигается в положительную сторону. Вследствие этого катодная реакция восстановления Н3О+ и анодная реакция ионизации металла замедляются, вызывая общее замедление растворения стали. В результате специфической адсорбции ионов галогенов уменьшается положительный заряд металлической обкладки двойного слоя. Поэтому облегчается адсорбция катионов органических веществ и увеличивается ингибирующее действие этих катионов в присутствии ионов галогенов. Механизм действия анионов органических и неорганических веществ различен. Поэтому понятно, почему в присутствии анионов органических веществ эффективность действия катионов органических веществ выражена меньше [3, 7]. Эффективность неионогенных веществ в присутствии анионов неорганических веществ также увеличивается.  [c.135]

Незначительное влиянияе ингибиторов на величину силы тока при высоких отрицательных потенциалах (при концентрации ингибиторов 0,005 лоль/л) объяснено их десорбцией с поверхности металла. Большие молекулы веществ катионоактивного и неионогенного типов десорбируются в результате их выталкивания из двойного слоя молекулами воды [10—12]. Десорбция ионов галогенов при этих же потенциалах вызвана электростатическими силами отталкивания, которые при этом становятся больше сил специфической адсорбции анионов.  [c.142]

Введение в сернокислый электролит с бутиндиолом галоидных соединений (0,05—0,1 н. НС1, КС], КВг, 0,001—0,01 н. KI) уменьшает торможение процесса, вызываемое органическими добавками (о-крезол и др.)- В присутствии ионов хлора или брома в этом электролите блестящие осадки олова образуются в более широком интервале плотностей тока за счет снижения нижнего предела 1 к [26]. Это объясняется, по-видимому, специфической адсорбцией хлор- и бром-ионов, способствующей частичному разрыхлению пленки ингибитора. Такое же явление было обнаружено ранее [27] в растворе сернокислого олова (0,05 н.), содержащем тетрабутиламмоний, когда при добавлении к нему 0,1 н. ионов С1-было полностью устранено тормозящее действие тетрабутиламмо-ння.  [c.213]

С учетом приведенных выше данных о влиянии ингибиторов на кинетические характеристики реакции катодного выделения водорода можно полагать, что ингибиторы блокировочного типа не меняют механизма реакции, а только уменьшают долю поверхности электрода, на которой протекает реакция. БД, как представитель таких ингибиторов, вероятнее всего адсорбируется на железе с участием я-электро-иов. Наоборот, катионоактивные ингибиторы, вызывая появление фрпо-тенциала положительного знака, создают дополнительный энергетический барьер при подходе Н+-ионов к поверхности электрода, что приводит к замедлению стадии разряда, которая становится лимитирующей. Ингибиторы, в ходе адсорбции которых образуются поверхностно-активные анионы, вызывают появление г1)гПотенциала отрицательного знака, ускоряя по этой причине стадию разряда и повышая, тем самым, вероятность усиления контроля катодного выделения водорода на стадии рекомбинации. Общее торможение процесса можно отнести за счет блокировки, а возможно и некоторых других эффектов, усиливающих ингибирующее действие добавки, адсорбция которой носит характер специфического или хемосорбционного взаимодействия.  [c.41]

По уравнению (1.89) с учетом наклона прямой —0 были рассчитаны величины Аг ". Оказалось, что эти величины (0,12 В для ТМБАП и 0,14 В для МП-1) в хлоридном растворе выше, чем для подобных солей в сульфатном растворе. Это вполне объяснимо улучшением условий адсорбции аммониевых катионов на поверхности металла, уже содержащей слой специфически адсорбированных анионов хлорида. Для полимерной соли П-1 прямая в координатах г —0 находится выше, чем зависимость, выражаемая уравнением г = 0. Это означает, что наряду с блокировкой эффективность этого ингибитора обусловлена дополнительным вкладом г1з1-эффекта, т. е. блокировочный и г1з1-эффекты в данном случае суммируются.  [c.48]

На основании полученных данных, а также с учетом сведений о характере влияния ингибиторов на механизм катодного процесса можно сделать вывод, что ингибиторы блокировочного типа не меняют механизма электродных реакций, а только уменьшают долю поверхности, на которой протекает процесс. В качестве ингибиторов блокировочного действия выступают органические вещества, способные к хемосорбции или специфической адсорбции на металлах. Адсорбция таких веществ описывается, как правило, изотермой Темкина.  [c.59]

Выше уже отмечалось, что в действии галогенид-ионов как ингибиторов на железе и никеле основную роль играет снижение энергии связи металл—водород, а блокировка поверхности и влияние згпотенциала хотя и имеют место,, но суммарная величина этих эффектов невелика. Лишь в случае хлорид-ионов, специфический характер адсорбции которых выражен довольно слабо, -фг и ме-н-эффекты соизмеримы и имеют различный знак. В итоге влияние хлорид-ионов на коррозионный процесс невелико, а при определенных концентрациях вообще отсутствует.  [c.91]

В случае четвертичных солей аммония, водород в которых полностью замещен на углеводородные радикалы, можно допустить только один путь воздействия на электродные процессы — электростатическая адсорбция и появление фгэффекта. В тех случаях, когда четвертичные аммониевые соли в качестве одного из заместителей содержат радикал с кратной углерод-углеродной связью, имеется возможность адсорбции как за счет электростатического взаимодействия, так и за счет специфических сил. Усиление адсорбции таких производных должно привести к появлению у них высоких ингибиторных свойств. Действительно, аллилзамещенные соли четвертичного аммония являются перспективными ингибиторами кислотной коррозии [97].  [c.97]


Смотреть страницы где упоминается термин Адсорбция ингибиторов специфическая : [c.127]    [c.110]    [c.34]    [c.149]    [c.312]    [c.185]    [c.284]    [c.68]    [c.73]    [c.74]    [c.51]    [c.102]   
Ингибиторы коррозии (1977) -- [ c.150 ]



ПОИСК



Адсорбция

Адсорбция ингибиторов

Ингибитор

Специфическая адсорбция



© 2025 Mash-xxl.info Реклама на сайте