Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статическое и динамическое действия нагрузки

Статическое и динамическое действия нагрузки  [c.289]

Учитывая линейную связь между напряжением и деформацией, а также принимая одинаковыми модули упругости при статическом и ударном действии нагрузки, что с достаточной степенью точности подтверждается экспериментом, по аналогии с последней формулой можно установить связь между статическим и динамическим напряжениями  [c.627]


На раму троллейбуса действуют статические и динамические изгибающие нагрузки, вызывающие напряжения и (Т . При пределе текучести условие прочности  [c.334]

По характеру действия различают нагрузки статические и динамические.  [c.173]

В зависимости от характера действия нагрузки подразделяют на статические и динамические.  [c.181]

Нагрузки различаются не только по способу их приложения (распределенные и сосредоточенные), но также по длительности действия (постоянные и временные) и характеру воздействия на конструкцию (статические и динамические).  [c.9]

По характеру действия нагрузки делятся на статические и динамические. Статической нагрузкой будем называть нагрузку, возрастающую медленно от нуля до некоторого определенного максимального значения и далее остающуюся постоянной или меняющуюся очень незначительно.  [c.14]

При расчетах деталей наибольшие затруднения нередко вызывают составление расчетных схем, отображающих реальную картину сил их взаимодействия, а также определение значения и характера приложения действительных нагрузок с учетом тех или иных видов их соединения или сочленения. Различают два основных вида нагрузки по характеру их действия статические и динамические.  [c.244]

Датчики силы с упругими элементами применяют во многих испытательных машинах для статических и динамических измерений силы, действующей на испытуемый образец. При статическом градуировании такой силоизмерительной системы, установленной в испытательной машине, элементы колебательной системы машины остаются неподвижными, поэтому пос едэ-вательно соединенные испытуемый образец и упругий элемент датчика силы нагружаются одинаково и показания силоизмерителя полностью соответствуют нагрузке, приложенной к образцу. А во время работы машины, когда ее колебательная система находится в движении, показания силоизмерителя уже не соответствуют действительной нагрузке на образец, так как возникают дополнительные инерционные силы, действующие на упругий элемент датчика силы. В зависимости от соотношения масс и жесткостей колебательной системы машины, показания силоизмерителя могут быть как выше, так и ниже нагрузки на образце. Разность между фактической нагру-женностью образца Ро и упругого элемента датчика силы Рд составляет динамическую ошибку. Однако точность измерения динамической нагрузки с практической точки зрения удобнее характеризовать не абсолютной динамической ошибкой, а отношением (%) ее к усилию, действующему на образец  [c.39]


Представление зависимостей, учитывающих совместное влияние нелинейных статических и динамических факторов. Для резиноподобных материалов, на которые действует динамическая нагрузка, накладывающаяся на нелинейное статическое нагружение, в работе [3.2] было предложено представить напряжение в виде произведения функции частоты колебаний со и функции деформации X  [c.125]

На вагон действуют а) статические нагрузки (постоянные силы) (см. табл. 5) и б) динамические нагрузки (переменные силы) (см. табл. 6). Расчёт выполняется в двух вариантах 1) с учётом только одних статических нагрузок и 2) с учётом совместного действия статических и динамических нагрузок при наиболее неблагоприятном их сочетании.  [c.637]

Каждая машина, попавшая к потребителю и включенная в соответствующий производственный процесс, испытывает действие сложной системы внешних и внутренних сил — статических, медленно изменяющихся, и динамических (технологическая нагрузка от выполняемой работы, нагрузка при транспортировке и статическая нагрузка при  [c.233]

Динамические характеристики незамкнутых гидромуфт с внутренним тором и черпаковыми трубками не отличаются от статических при i 0,92. Динамические характеристики гидромуфт отличаются от статических (в сторону увеличения передаваемых крутящих моментов) при г 0,92 из-за увеличенного количества жидкости в рабочей полости. Они зависят от характера и времени действия нагрузки.  [c.65]

На рис. 62, а приведены статические и динамические нагрузки, действующие в деталях механизма свободного хода, расположенного между насосным и турбинным колесами гидротрансформаторов с осевым турбинным колесом в тяговом режиме.  [c.109]

Отношение напряжения оГд, вызванного динамическим действием нагрузки, к напряжению а, вызванному статическим действием той же нагрузки, носит название динамического коэффициента и обозначается /С  [c.59]

При ударной нагрузке следует учесть, что напряжения обычно повышаются. Так как и в этом случае напряжения все же обычно вычисляют в предположении статического действия сил, то влияние динамического действия нагрузки приходится учитывать соответствующим увеличением коэ( ициента запаса.  [c.60]

Гидродинамические силы. При анализе динамики роторов, опирающихся на подшипники скольжения, необходимо решать совместную задачу теории колебаний и гидродинамики. Гидродинамическая сторона задачи сводится к решению ряда уравнений гидродинамической теории смазки при неустановившемся течении, окончательной целью решения которых, как правило, является определение так называемых статических и динамических характеристик. Статические характеристики определяют кривую стационарных положений цапфы, расход смазки, потери мощности на трение. Динамические характеристики (коэффициенты) определяют действующие на цапфу дополнительные силы, возникающие при малых перемещениях цапфы из стационарного положения. Знание этих коэффициентов позволяет решать задачи устойчивости и линейные задачи вынужденных колебаний при внешних периодических нагрузках, малых по сравнению со статической нагрузкой.  [c.160]

Модели нагружения. Эти модели содержат схематизацию внешних нагрузок по координатам, времени, а также по воздействию внешних полей и сред. Силовые нагрузки, действующие на конструкции, можно разделить на три группы 1) объемные или массовые силы 2) поверхностные силы 3) сосредоточенные силы. Объемные нагрузки действуют на каждую частицу внутри тела. К таким нагрузкам относятся собственный вес конструкции, силы инерции, силы магнитного притяжения и т.п. Поверхностные нагрузки распределены по значительным участкам и являются результатом взаимодействия различных конструктивных элементов одного с другим или с другими физическими объектами (например, давление жидкости или газа на стенки сосуда, давление ветра на оболочку градирни и т.п.). Если силы действуют на небольшую поверхность конструкции, то их можно рассматривать как сосредоточенные нагрузки, условно приложенные в одной точке. По характеру действия нагрузки можно разделить на статические и динамические. Статическая нагрузка возрастает от нуля до своего номинального значения и остается постоянной во время эксплуатации конструкции. Переменное, или динамическое, нагружение — нагружение, изменяющееся во времени. Часто встречающимся видом переменного нагружения являются циклические нагрузки, характеризующиеся периодическим изменением значения и/или знака. Модели нагружения должны учитывать воздействие полей и сред. Наиболее существенным является воздействие температурного поля. Изменение температуры элементов конструкций вызывает температурные деформации. Если они не удовлетворяют уравнениям совместности деформаций, то в элементах конструкций возникают температурные напряжения, значения которых часто оказываются соизмеримы со значениями напряжений, возникающих от воздействия внешних сил. Кроме того, изменение температуры влияет на механические характеристики конструкционных материалов. В некоторых случаях приходится учитывать влияние нейтронного облучения, электромагнитного поля, воздействие коррозионных сред.  [c.401]


Обычно паяные соединения должны противостоять внешним механическим нагрузкам статическим и динамическим с различным временем н знаком нагружения как в обычных, так и высоко илн низкотемпературных условиях. Растягивающие или сжимающие нагружения могут развиваться в изделиях, практически не работающих под действием внешних нагрузок, но испытывающих периодический  [c.149]

Действующие на конструкцию нагрузки описываются для расчетных фрагментов и в общем случае являются композициями трех составляющих продольной (в плоскости сечения конструкции), поперечной (в окружном направлении) и динамической. Каждая из составляющих задается отдельно, а их взаимосвязь обеспечивается использованием ссылок. При этом различные продольные составляющие нагрузок могут иметь одинаковые законы изменения в окружном направлении и во времени. Подобный подход позволяет описать различные схемы нагружения изделий осесимметричное, неосесимметричное, статическое и динамическое.  [c.332]

При изучении прочности и разрушения деталей, конструкций и машин различают два вида нагрузок статические и динамические. К статическим нагрузкам относят такие, которые постепенно возрастают от нулевых до своих конечных значений, вызывая в теле медленный рост напряжений и деформаций. Здесь в любой момент имеет место равновесие между внешними и внутренними силами. При действии же динамической нагрузки нарушается равновесие между ними. Примером статической нагрузки может служить подъем груза на некоторую высоту с постоянной скоростью (установившееся движение), когда в любой момент времени существует равновесие между грузом (внешняя сила) и натяжением в канате (внутренняя сила). В то же время при неравномерном (например, ускоренном) движении того же груза на  [c.50]

Иными словами, между актом приложения нагрузки и моментом наступления в деформированном материале равновесного состояния проходит достаточно большой отрезок времени. Процессы установления равновесия, временной ход которых определяется перегруппировкой частиц под действием теплового движения, являются релаксационными. Релаксационная природа — основная особенность высокоэластической деформации резины, определяющая ее основные физико-механические свойства. Вследствие релаксационных процессов, протекающих в резине при деформации, проявляются явления ползучести и релаксации напряжения, уровень которых в свою очередь определяет долговечность материала. Проявление того или иного эффекта зависит от режима деформации резины. В зависимости от частоты деформирования различают статический и динамический режимы нагружения, а в зависимости от способа деформирования — режимы постоянной нагрузки или постоянной деформации.  [c.25]

Адсорбционный механизм действия [426] проявляется в чистом виде в неэлектролитах, но неполярные жидкости обычно не приводят к охрупчиванию высокопрочных сталей, подвергаемых статической и динамической нагрузкам [427]. Опыты с карбоксильными кислотами показали, что абсорбционное понижение прочности высокопрочных сталей при статических и динамических нагрузках зависит от длины углеводородной цепи в этих соединениях [427].  [c.157]

Токовая и тепловая защита электродвигателей от перегрузки. На крановых фазовых электродвигателях устанавливаются токовые реле мгновенного действия. Токовое реле способно пропускать максимальный ток, соответствующий суммарной (статической и динамической) нагрузке практически этот ток превышает в 2— 2,5 номинальный. Возможна регулировка и на меньший ток. Однако такая защита, обеспечивая сохранность электродвигателя, не предупреждает возможных механических повреждений или опрокидывания крана при его перегрузке. Тепловые реле предупреждают опасный для целости изоляции нагрев обмоток двигателя при режимах работы, которые на практике могут оказаться выше расчетных. Некоторые зарубежные фирмы устанавливают на кранах и мгновенно действующие и тепловые реле. В СССР и США ограничиваются в основном мгновенно действующими реле, считая, что при повторно-кратковременном режиме тепловые реле не всегда могут правильно реагировать на изменение температуры обмоток. При повышенном же режиме работы единственно правильное решение — замена двигателя или принятие мер к недопущению такого режима.  [c.13]

В процессе эксплуатации на платформу автомобиля-самосвала действуют статические и динамические нагрузки, зависящие от свойств и расположения перевозимого груза и перекосов автомобиля. Нагрузки можно разделить на следующие виды  [c.120]

Однако необходимо иметь в виду, что процесс деформирования при действии ударных нагрузок существенно отличен от деформирования при статических нагрузках. При малых скоростях деформирования температура тела практически остается неизменной, так как она успевает выравниваться по всему телу и с окружающей средой. Наоборот, при ударных нагрузках, прикладывающихся с большой скоростью, такое выравнивание происходить не может, поэтому процесс деформирования происходит практически при постоянном количестве тепла в деформируемом объеме. Таким образом, процессы деформирования при статической и динамической нагрузках происходят в существенно различных условиях. Если первый является изотермическим, то второй следует считать адиабатическим. Эта разница должна сказываться уже при упругих деформациях, так как в случае адиабатического процесса упруго деформирующийся образец охлаждается (объем увеличивается при постоянном количестве тепла). После того как возрастание нагрузки прекращается, образец нагревается и вследствие этого получает добавочную деформацию при разгрузке тот же процесс протекает в обратном порядке, так что диаграмма деформации образует петлю (петля гистерезиса). Еще более заметно сказывается адиабатический характер процесса на пластической деформации, которая сопровождается освобождением значительного количества тепла. В результате этого происходит значительное повышение предела текучести при замедленном упрочнении и относительно малом изменении временного сопротивления. Качественное различие адиабатического и изотермического процессов деформирования можно видеть на схематических диаграммах этих процессов, представленных на рис. 247. Таким образом, характери-  [c.441]


По характеру действия нагрузки делятся на статические и динамические. Статические нагрузки прикладываются к конструкциям постепенно и остаются почти неизменными в течение всего времени работы конструкции. Динамические нагрузки действуют непродолжительное время и достигают значительных величин в малый отрезок времени. Их возникновение в большинстве случаев связано с силами инерции. Например, шатун и ползун быстроходного кривошипно-ползунного механизма во время работы получают большие динамические нагрузки от изменения величины и направления скоростей. Значительные динамические нагрузки создаются также на сцепки вагонов при трогании состава с места, на детали пневматических молотков и других машин ударного действия.  [c.156]

В случае изгиба при действии ударной нагрузки берут отношение статического и динамического прогибов для определения динамических напряжений  [c.169]

Увеличение мощности при сохранении габаритных размеров вызывает резкое увеличение нагрузки на детали и необходимость соответствующего повышения статической и динамической прочности. С этой целью необходимо широкое применение экспериментальных методов определения фактических напряжений и деформаций. В качестве примера может быть приведена втулка рабочего колеса Куйбышевской ГЭС весом 82 т, которая имеет сложную форму и подвергается действию сложной системы сил. Для ее расчета с помощью экспериментальных методов на моделях из пластмассы были уточнены распределение напряжений, деформации, влияние присоединенных деталей. Для расчета лопасти рабочего колеса был создан уточненный метод, проверенный на модели оптическим методом, а также тензометрическими датчиками кроме того, были исследованы вибрационные свойства лопасти. Это дало конструкторам большой материал для правильного конструирования турбин и снижения их конструктивной металлоемкости.  [c.7]

По характеру действия нагрузки делятся на статические и динамические. Статические нагрузки передаются на конструкцию спокойно, плавно, возрастая от нуля до конечного своего значения. Характерным примером статической нагрузки может служить нагрузка от собственной массы элементов, не подвергающихся сотрясению машин усилия, возникающие в конструкциях вследствие предварительных внутренних напряжений, и т. д. Динамическим нагрузкам свойственно резко изменяющаяся во времени их величина, часто со столь же быстрым изменением их направления. К ним относятся инерционные нагрузки, возникающие при разгоне или замедлении перемещающихся масс машин при прямолинейном или вращательном движении (в том числе вызванные и неоднородностью рабочей среды), а также центробежные силы, возникающие при вращении. Динамические нагрузки могут быть пульсирующими, знакопеременными или носить характер единичного импульса, в результате действия которого в конструкции возникают свободные колебания.  [c.84]

Во время работы кранов на механизмы и металлоконстрзгкции действуют статические и динамические (инерционные) нагрузки. Инерционные нагрузки возникают в начале движения цри разгоне и торможении, а также вследствие толчков и ударов. На краны, работалощие на открытом воздухе, кроме статических нагрузок от массы груза и конструкций, действуют ветровая нагрузка, нагрузки от массы снега и льда при гололеде. Во время работы механизма подъема наибольшее значение имеют инерционные нагрузки, возникающие при разгоне, подъеме груза и торможении при опускании груза. Величины этих нагрузок во время подъема зависят от первоначального положения груза, так как разгон механизма может начаться либо при удержании груза на весу на натянутом канате, либо при подъеме груза с земли (подъем с подхватом), если барабан приводится во вращение при ослабленном канате, и происходит рывок. Зазоры между звеньями также неудовлетворительно влияют на их работоспособность. При больших зазорах и значительных скоростях относительных движений звеньев возможны удары их друг о друга, что приводит к дополнительному увеличению инерционных нагрузок и снижению надежности узлов и механизмов кранов.  [c.145]

Приемке подлежат машины новые, после ремонта или монтажа, а также машины, передаваемые одной организацией другой. При приемке проверяют наличие установленной документации - паспорта, технического описания и инструкции по эксплуатации, а для мащин, находящихся под контролем органов Госгортехнадзора, кроме того, также документации, устанавливаемой этими органами комплектность машины, инструмента и запасных частей техническое состояние машины путем осмотра и испытаний на холостом ходу и под нагрузкой. Машины, на которые распространяются требования Госгортехнадзора, при приемке и сдаче в эксплуатацию подвергаются полному техническому освидетельствованию, включающему статические и динамические испытания. Статические испытания проводят с целью проверки прочности несущей конструкции машины под нагрузкой. При динамических испытаних проверяют действия всех механизмов машины под нагрузкой.  [c.18]

При анализе пусков и торможений, а также работы гидропривода в условиях установившейся динамики (раскачка тру а, работа н волне плавучего крана и т. п.) возникает необходимость отображать гидропривод динамической схемой и соответствующей этой схеме математической моделью. При таком подходе Лроцессы в крановых механизмах соответствуют процессам в цепных динамических моделях, свойства которых определяются парциальными свойствами отдельных звеньев и подсистем, включая динамическую xieMy гидропривода 141. На рис. II.2.7 изображена динамическая схема гидропривода объемного регулирования с разомкнутым потоком. Модель внешне напоминает упрощенную принципиальную схему соот]ветствующего гидропривода, связи в котором идеализированы (отсутствуют статическая и динамическая податливость и потери давления в гидромашинах и гидролиниях). При этом утечки и перетечки Qy в гидромашинах, гидроаппаратуре и гидролиниях, определяющие статическую податливость — снижение частоты вращения а выходного звена гидропривода под действием установившейся части Л1о2 нагрузки Mg (/) — имитируются расходом Qy через условный дроссель сжимаемость жидкости и. расширение гидролиний, определяющих динамическую податли-  [c.301]

Размеры намечаемого к применению подшипника могут быть выбраны на основе оценки его грузоподъемности в соответствии с действующими нагрузками, частотой вращения, требуемыми ресурсом и надежностью. Значения динамической и статической грузоподъемности приведены в каталоге. Должны быть выполнены расчеты на статическую и динамическую грузоподъемность. На статическую грузоподъемность расчеты должны быть выполнены не только для невращающихся подшипников или вращающихся при малых частотах вращения (и < 10 мин ), или совершающих медленные колебательные вращения, но и для подшипников, вращающихся с частотой и > 10 мин и подверженных действию кратковременных ударных нагрузок или значительной перегрузке. На статическую грузоподъемность проверяют также подшипники, работающие при малых частотах вращения и рассчитанные на небольшой ресурс.  [c.226]

Влияние остаточных напряжений на прочность при статических и динамических нагрузках. В первую очередь выясним действие остаточных напряжений в деталях, работающих при однородном напряженном состоянии. Для этого рассмотрим стержень, кривая деформирования материала которого не имеет упрочнения (рис. 8.17, а). В стержне имеются остаточные напряжения (рис. 8.17, б), и он нагружается растягивающей силой N (рис. 8.17, в и г). Если материал работает в области упругих деформаций, то суммарные напряжения стс получаются алгебраическим сложением остаточных напряжений Оост и напряжений от внешних нагрузок ом (рис. 8.17, в). При некотором значении N напряжения во внешних волокнах достигнут предела текучести. При дальнейшем возрастании нагрузки напряжения в этих волокнах увеличиваться не будут, хотя деформации стержня продолжают расти. В данном случае влияние остаточных напряжений сказалось в преждевременном появлении пластической деформации в наружных (растянутых) волокнах. Если бы на стержень действовала сжимающая нагрузка, то пластическая деформация началась бы в срединных (сжатых остаточными напряжениями) волокнах. Влияние остаточных напряжений сказывается на понижении предела пропорциональности и предела упругости (в некоторых случаях и условного предела текучести).  [c.294]


Для определения механических свойств металлов и спла )в испытывают стандартные образцы. Механические испытания в зависимости от характера действия нагрузки могут быть статические, при которых нагружение производится медленно и нагрузка возрастает плавно или остается постоянной длительное время, динамические, при которых нагрузка на образец возрастает мгновенно, и повторно-переменные, при которых изменяются величина и направление действия нагрузки.  [c.94]

Подшипники роликов следует рассчитывать по наиболее на-гр уженному горизонтальному ролику, на который действует сумма максимальных внешних и внутренних технологических (послесборочных) нагрузок. На значение и характер внешних нагрузок (рис. 2.25) значительное влияние оказывают скорость движения V и поперечные вертикальные перемещения (колебания) 2 х, /) ленты в пролете, шаг опор /р, распределенная масса ленты и изменяющаяся во времени из-за неравномерности нагрузки неравномерно распределенная по длине ленты масса груза д (х, t). Для упрощения решения задачи ленту рассматривают в виде гибкого с неизменным поперечным сечением элемента, растянутого на каждом участке постоянной силой и не работающего на изгиб. В свою очередь, внешние нагрузки можно разделить на статические и динамические. Прн определении внешней статической нагрузки на ленту, а через нее и на опору насьшной груз, включая и среднекусковой состав, может быть представлен в виде сплошной среды с изотропными свойствами. При транспортировании крупнокусковых грузов или сьшучих грузов с крупными кусками ролики опор, кроме того, воспринимают значительные динамические нагрузки.  [c.130]

Изоляция вибрацнонны.х перегрузок нелинейными амортизаторами существенно зависит от того, действуют или нет при этом линейные перегрузки. Поэтому для правильной оценки виброизолирующих свойств нелинейных амортизаторов необходимо иметь упруго-демпфн-рующие характеристики этих а-мортнзаторов, снятые при различных статических и динамических нагрузках и различных частотах иагружения.  [c.118]

При статически действующих нагрузках на тело или конструкцию несущая способность определяется значе-иием нреде.тьных интенсивностей нагрузок. При динамически действующих нагрузках для разрушения конструкци " или для того, чтобы вызвать в ней недопусти.лше остаточные перемещения, необходимо приложить к ней импульс нагрузки, значение которого не менее некоторого предельного. Однако при этом существенное влияние на поведение конструкции может оказывать форма гнгаульса и.ли зависимость нагрузки от времени. Целью решения конкретных задач мо кет быть именно определение предельного значершя импульса действующей нагрузки, причем в зависимости от его формы. Решение таких задач сводится к построению зависимости остаточных перемещений и деформаций от величины действующего илшульса при заданно его форме.  [c.100]


Смотреть страницы где упоминается термин Статическое и динамическое действия нагрузки : [c.221]    [c.349]    [c.400]    [c.624]    [c.42]    [c.3]   
Смотреть главы в:

Основы технической механики  -> Статическое и динамическое действия нагрузки



ПОИСК



Динамическое действие нагрузки

Динамическое действие нагрузок Динамические нагрузки

Динамическое действие сил

Нагрузка динамическая

Нагрузка статическая

Нагрузки динамические статические

Нагрузки, действующие на зуб

Определение результирующего значения совместно действующих статических и динамических нагрузок



© 2025 Mash-xxl.info Реклама на сайте