Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защита тепловая

Поэтому в настоящее время проводятся интенсивные поиски новых средств защиты тепловых сетей от коррозии, и органосиликатные материалы стоят в ряду наибо-более вероятных претендентов на широкое использование в данной области.  [c.42]

Использование подземных источников горячей воды в СССР затрудняется из-за недостаточно высокой температуры и большой минерализации их. Минеральные примеси образуют в трубопроводах и внутренних частях теплообменников твердые отложения, которые сужают сечения труб, снижают пропускную способность турбин и т. д. Кроме того, несовершенство существующих установок сбора и подготовки термальной воды, отсутствие разработанных надежных средств защиты тепловых систем от коррозии и солеотложения, недостаточный выпуск и отсутствие новых разработок специального оборудования для электростанций и систем теплоснабжения, использующих источники термальных вод, также сдерживают развитие теплоснабжения на базе термальных вод.  [c.213]


Обслуживание магистралей крайне затрудняется, когда грунтовая или другая вода попадает в камеры или каналы теплопроводов. Если в результате попадания воды в каналы паровых магистралей трубы окажутся в воде, создается прямая угроза надежности паропровода. Охлаждение паропровода может привести к сильной конденсации пара, а -большое количество конденсата в паре легко может вызвать сильные гидравлические удары. Постоянное или длительное наличие воды в камерах и каналах теплопроводов приводит к быстрому разрушению изоляции, коррозии металла, к размыванию грунта под опорами и т. д. Поэтому защита тепловых сетей от грунтовых и поверхностных ливневых вод является одной из самых важных задач эксплуатации.  [c.269]

При такой неисправности все происходит, как если бы конденсатора не было совсем. Однако если двигатель оснащен конденсатором, значит он для чего-то нужен. Следовательно, мы можем представить себе, что двигатель либо не будет нормально работать, либо не будет запускаться, что зачастую будет обусловливать срабатывание тепловой защиты (тепловое реле защиты, автомат защиты).  [c.282]

Толщина электрической изоляции принимается при расчете равной 2 мм (толщина миканитовой гильзы). Высота направляющих, используемых для защиты тепловой изоляции от механических повреждений, обычно пе превышает 4—6 мм. С учетом приведенных выше соображений формула (150) примет вид  [c.387]

Устройству технологической защиты тепловых сетей могут быть выведены из работы только по распоряжению главного инженера Теплосети или его заместителя. Действенность этих устройств должна периодически проверяться в сроки и в объеме согласно указаний местной инструкции.  [c.339]

К устройствам технологической защиты тепловых сетей относятся регуляторы давления, редукционные и предохранительные клапаны, клапаны подпора и рассечки сети на гидравлически изолированные зоны, устройства АВР и другие устройства, препятствующие нарушению теплового и гидравлического режима сети и систем теплопотребления или предохраняющие защищаемую ими зону сети или системы от недопустимого изменения в них параметров теплоносителя.  [c.339]

Штукатурные растворы для защиты тепловой изоляции  [c.49]

Для защиты тепловой изоляции от увлажнения применяют различные мастики, рулонные и листовые материалы.  [c.52]

ВНЕШНЯЯ ЗАЩИТА ТЕПЛОВОЙ ИЗОЛЯЦИИ  [c.195]

Защита вспомогательных цепей от коротких замыканий производится с помощью плавких предохранителей. Защита от перегрузок обеспечивается либо с помощью реле перегрузок, либо комбинированной защитой — тепловыми реле и реле перегрузки (секции С ).  [c.428]

Переустройство и защита тепловых сетей. Переустройству подлежат существующие сети в случае реконструкции железнодорожной станции или при проектировании новых подъездных путей. Защита теплопроводов предусматривается в случаях пересечения их с железнодорожными путями. Переходы могут осуществляться путем прокладки каждого трубопровода теплосети в самостоятельном футляре, в непроходных каналах или в тоннелях при совмещенной прокладке с другими трубопроводами. Способ прокладки перехода зависит в основном от производства работ и от соблюдения требований, предъявляемых владельцем тепловых сетей.  [c.144]


Важно подчеркнуть, что достижение высокой точности у технических термометров сопротивления требует применения тех же принципов, которые лежат в основе конструирования самых точных эталонных термометров. Дополнительные требования, предъявляемые к техническим термометрам (прочность, невысокая стоимость, иногда также малые размеры), должны удовлетворяться без чрезмерного снижения требований к точности измерений, которая зависит от качества теплового контакта с объектом измерения, отсутствия механических напряжений на чувствительном элементе, защиты от коррозии, возможности периодической поверки термометра.  [c.231]

Пористые металлокерамические элементы иногда применяют при подаче компонентов топлива в качестве инжектора для ЖРД. В конструкции, представленной на рис. 1.5, д, оба компонента топлива смешиваются, испаряются и начинают реагировать внутри проницаемого вольфрама. В пористом алюминиевом инжекторе (см. рис. 1.5,6) подача компонентов осуществляется раздельно. Такие устройства позволяют удачно решать проблему тепловой защиты головки ЖРД при одновременном испарении компонентов топлива, что приводит к значительному сокращению габаритов камеры сгорания.  [c.9]

Интересно отметить, гго в такой формулировке задача описывает также и процесс охлаждения пористой тепловой защиты ядерных реакторов, где выделение теплоты происходит за счет поглощения проникающей радиации, поток которой уменьшается по экспоненциальному закону.  [c.62]

Кроме того, при определенной толщине жидкой пленки наблюдается капельный (аэродинамический) унос жидкости с гребня. Эта часть жидкости не участвует в испарении и тем самым непроизводительно увеличивает расход охладителя для защиты поверхности от теплового во> действия. Капельный унос обычно отсутствует в случае минимального (критического) удельного расхода охладителя, когда температура по-  [c.156]

Для защиты катода и сопла от разрушения и перегрева наилучшим газом считается аргон, так как он химически инертен и имеет малую теплопроводность (рис. 2.59). Однако аргон малоэффективен для преобразования электрической энергии в тепловую. Во-первых, напряженность поля дугового столба в аргоне меньше, чем в водороде, азоте, гелии д, ж 0,8 В/мм яа  [c.104]

Так как простое силицирование вследствие нелетучести высших окислов металлов не является эффективной мерой защиты ниобия и тантала [9], широкое распространение получили для их защиты многокомпонентные силицидные покрытия, содержащие относительно небольшие количества металла-основы. Это покрытия Ге—А1—81, Ре—Сг—81, Со—Т1—81, Мн—Т1—81, Мо—Т1—81 и т. д., наносимые газофазным диффузионным [10] и шликерным методами [И—13], причем в последнем случае фактически проводится диффузионное насыщение из обмазок с образованием диффузионно-покровных защитных композиций. Концентрация металла-основы в наружных слоях покрытий невелика. Такие покрытия разрабатываются для защиты тепловых  [c.5]

В качестве сухой штукатурки сверх тепловой изоляции в последнее время начали применяться асбоцементные полуцилиндры заводского изготовления. При этом способе защиты тепловой изоляции от повреждений отпадает надобность в обвертке труб сверх слоя тепловой изоляции металлической сеткой и применения штукатурки асбоцементным раствором. Асбоцементные полуцилиндры изготовляются из сырых асбошиферных листов, для изготовления которых применяется асбест V—VI сортов и цемент марки 500. Нижне-Тагильский цементно-шиферный завод изготовляет асбоцементные полуцилиндры для труб Dy = 150- 800 мм. Однако конструкция Нижне-Тагильского завода имеет недостаток, заключающийся в том, что полуцилиндры не имеют раструбов и для их крепления на изоляции требуется устанавливать металлические бандажи из нержавеющей стали. При наличии раструбных полуцилиндров швы заделываются цементным раствором, поэтому надобность в дорогих металлических креплениях — бандажах отпадает.  [c.357]

Вода для подпитки тепловых сетей должна удовлетворять следующихм требованиям (ПТЭ, 394) остаточная жесткость не более 0.8° содержание кислорода не более 0,1 мг л. Допускается подпитка тепловой сети продувочной водой котлов или смесью ее с катиони-рованной водой. Для защиты тепловой сети от коррозии подпиточная вода должна быть щелочной и ее необходимо сульфитировать (гл. 6). Для экономии реагента (сульфита натрия) следует сульфитировать подогретую воду.  [c.180]


Принципиальная схема такого устройства представлена на рис. 33.4. Когда замыкаются контакты (1-2) задающего термостата, если при этом замкнуты контакты устройств автоматики (вентилятор испарителя...), управления (ручной выключатель пуск/стоп ) и приборов защиты (тепловая защита, прессостат ВД...), ток, проходя через контакты (2-3) запитывает реле зимнего запуска DH (3-6), запуская временной механизм. В этот момент нормально разомкнутые контакты DH (4-5) немедленно замыкаются, а контакт временного механизма остается замкнутым в течение 2 минут, шунтируя предохранительный прессостат НД.  [c.188]

Для защиты ниобия и тантала, как правило, используют многокомпонентные силицидные покрытия (табл. 14.16) диффузионного типа, в которых концентрация основного металла невелика. В покрытии Сг—Ti—Si роль барьера для диффузии ниобия из основы выполняет слой фазы Nb fa. Покрытия, содержащие V и Мп, обладают само-залечивающими свойствами. Покрытия, получаемые шли-керным методом, используют для защиты тепловых экранов, панелей и т. д. Иногда при термообработке шликер-ного слоя проводят его оплавление.  [c.440]

Применение покрытий. Для защиты тепловых сетей от наружной коррозии в качестве основного способа рекомендуется покрытие из рулонного резинобнтумного материала — изола, состоящего из резинобитумного вяжущего пластификатора, асбеста и антисептика. Покрытие состоит из двух слоев изола, приклеенного холодной изольной мастикой МРБ-ХП-2. В качестве растворителя для мастики применяется бензин. Поверх изола на мастике наклеивается защитный слой из крафт-бумаги. Общая толщина покрытия составляет около 5 мм. Покрытие рекомендуется применять для подающих и обратных трубопроводов в канальных и бесканальных прокладках при температуре теплоносителя до 150° С. Свойства изола сохранять гибкость при отрицательных температурах, а мастики — клеящую способность при этих же условиях позволяют проводить изоляцию стыковых соединений и ремонтные работы на трассе при температурах воздуха до 10° С.  [c.207]

В настоящее время наиболее действенным средством защиты тепловых сетей от электрохимической коррозии являются антикор  [c.328]

Сущность II техника спарки электронным лучом. Сущность процесса состоит в использовании кинетической энергии потока электронов, движуп1ихся с высокими скоростями в вакууме Для умоиыиения потери кинетической энергии электронов за счет соударения с молекулами газов воздуха, а также для хими ческой и тепловой защиты катода в электронной пушке создают вакуум пор>гдка 10 —10" мм рт. ст.  [c.67]

При загрузке тщательно подбирают химический состав шихты в соответствии с заданным, а необходимое количество ферросплавов для получения заданного химического состава металла загружают на дно тигля вместе с шихтой. После расплавления шихты на поверхность металла загружают шлаковую смесь для уменьшения тепловых потерь металла и уменьшения угара легирующих элементов, защиты его от насыщения газами. При плавке в кислой печи после расплавления и удаления плавильного шлака наводят шлак из боя стекла (SiOj). Металл раскисляют ферросилицием, ферромарганцем и алюминием перед выпуском его из печи.  [c.40]

Периферийный квазипотенци-альный вихрь, выполняя функцию тепловой защиты стенок камеры сгорания и других элементов конструкции, обеспечивает стабилизацию дугового разряда, офани-чивая рост дуги при увеличении рабочего тока [78, 149, 192]. Вихревая характеристика вихревого плазмотрона имеет восходящий участок, наличие которого улучшает технологические качества устройства, обеспечивая возможность гарантированной устойчивой работы дуги на восходящем участке при отсутствии в электрической цепи питания балластного сопротивления. Эго нетрудно показать, воспользовавшись анализом уравнения Кирм-офа, записанного для цепи электропитания плазмотрона [78]. Горение дуги будет устойчивым, если действительные части корней уравнения Кирхгофа отрицательны  [c.355]

Способ транспирационного охлаждения конструкций, на которые воздействуют внешние тепловые конвективные или лучистые потоки высокой плотности (см. рис. 1.1), обладает рядом существенных преимуществ по сравнению с другими видами тепловой защиты а - высокой эффективностью использования охладителя б - контролируемым уменьшением внешнего конвективного теплового потока, достигающего поверхности за счет регулируемого вдува охладителя в - снижением внешнего лучистого теплового потока при подаче газовзвеси с твердыми частицами, а также лучепоглощающего газа или паров г - отсутствием ограничений по величине внешнего теплового потока при сохранении неизменности формы и целостности охлаждаемой поверхности. В ряде случаев при чрезвычайно высоких тепловых потоках, сложной конструкции или малой доступности поверхности пористое охлаждение -единственно возможный метод тепловой защиты.  [c.7]

Качественно новые явления наблюдаются при охлаждении пористых электродов электроразрядных устройств и МГД-генератора вдувом инертного газа с добавкой ионизирующейся присадки щелочных металлов. В этом случае наряду с тепловой и химической защитой электродов имеет место и защита от эрозии, так как добавление в охладитель ионизирующейся присадки позволяет достигнуть высокой плотности тока на катоде до 15 АУсм в режиме распределенного бездугового разряда при температуре рабочей поверхности 1200...1600 К.  [c.8]

Транспирационное охлаждение при вдуве лучепоглощающих газов или паров, а также газовзвеси с твердыми частицами может применяться для ослабления теплового излучения от нагретых элементов с целью инфракрасной защиты.  [c.8]

Известно, что объемцре тепловыделение происходит по экспоненциальному закону в элементах тепловой защиты ядерных реакторов вслед-стие поглощения проникающей радиации. Изготовление их из пористого материала и прямоточное охлаждение пронизывающим потоком охладителя позволяет значительно снизить температуру и ее градиенты по сравнению с обычным конвективным охпаждением сапошных элементов.  [c.11]


В криосорбционной панели вакуумного насоса двойную функцию фильтра и теплового экрана 1 выполняет пористая металлокерамическая стенка (рис. 1.13). Замкнутая полость между пористым экраном 1 и профилем 2, охлаждаемым протекающей по каналу 3 криогенной жидкостью, заполнена кристаллическим адсорбентом 4. Откачиваемый газ I проходит сквозь пористую стенку, в ней охлаждается и затем поглощается адсорбентом. Экран воспринимает падающий на него лучистый тепловой поток и переносимую откачивамым газом теплоту теплопроводностью передает охлаждаемому профилю. Таким образом, пористая стенка выполняет функцию тепловой защиты, препятствуя попаданию теплоты на адсорбент, и одновременно является фильтром, удерживающим мелкозернистый адсорбент от распыления по вакуумной системе. Это позволяет сделать конструкцию криосорбционного насоса высокотехнологичной и предельно компактной.  [c.16]

Транспирационное охлаждение конструкций, на которые воздействуют внешние тепловые конвективные или лучистые потоки, является одним из эффективных методов тепловой защиты. Основная идея этого способа состоит в том, что продавливаемый сквозь пористую стенку охладитель за счет интенсивного внутрипорового теплообмена поглощает теплоту, передаваемую теплопроводностью по каркасу от внешней нагреваемой поверхности (рис. 3.1). Широкое распространение получили также охлаждаемые таким образом проницаемые элементы с объемным тепловьщелением, которое может иметь различную физическую природу (см. рис. 1.2). Температурное состояние указанных систем исследовано в значительном количестве работ. Однако полученные результаты трудно сопоставимы вследствие значительного их произвола при выборе Лу, а  [c.47]

Несмотря на то, что основные принципы этого метода охлаждения известны уже более 40 лет, он до настоящего времени не получил широкого практического применения в системах тепловой защиты, что объясняется значительной сложностью и неустойчивостью процесса теплообмена при фазовьгх переходах охладителя.  [c.127]

Электрошлаковый процесс — это электротермический процесс, при котором преобразование электрической энергии в тепловую происходит при прохождении электрического тока через расплавленный электропроводный шлак. В отличие от дугового процесса под флюсом при электрошлаковом процессе почти вся электрическая мощность передается шлаковой ванне, а от нее — электроду и основному металлу. При этом расплавленный флюс служит защитой от вредного воздействия окружающей среды и средстаом металлургического воздействия на расплавленный металл. Количество тепла, выделяемого при электрошлаковш процессе, пропорционально току /, напряжению 7, сопротивлению шлака Я и времени I прохождения тока Это тепло тратится  [c.18]

Световые лучи оказывают ослепляющее действие, так как их яркость значительно превышает норму, допускаемую для человеческого глаза (до 10 000 раз). Ультрафиолетовые лучи даже при кратковременном Действии в течение нескольких секунд вызывают заболевание глаз, называемое электроофтальмией. Оно сопровождается острой болью, резью в глазах, слезотечением, спазмами век. Продолжительное действие ультрафиолетовых лучей приводит к ожогам кожи. Инфракрасные лучи при длительном действии вызывают помутнение хрусталиков глаз (катаракта), что может привести к ослаблению и потере зрения, тепловое действие этих лучей вызывает ожоги кожи. Защита зрения и кожи лица при дуговой сварке обеспечивается применением щитков, масок или шлемов, в смотро вое отверстие которых вставляют светофильтры, задерживающие и поглощающие излучение дуги. В зависимости от мощности дуги применяют различные светофильтры. Для защитц окружающих от  [c.155]

Каждому основному комплекту присваивают самостоятельное обозначение, в состав которого включают базовое обозначение и (через дефис) марку основного комплекта. Базовое обозначение присваивают по действующей в проектной организации системе. Марки основных комплектов рекомендуются следующие (наименование — марка) генеральный план — ГП сооружение транспорта — ТР технология производств — ТХ технологические коммуникации — ТК воздухоснабжение — ВС автоматизация — А электроснабжение — ЭС электрическое освещение — ЭО силовое электрооборудование — ЭМ газоснабжение — ГС наружные сети и сооружения газоснабжения — НГ тепловые сети — ТС связь и сигнализация — СС архитеюурные реще-ния — АР интерьеры — АИ конструкции железобетонные — КЖ, металлические — КМ, металлические деталировоч-ные — КМД, деревянные — КД архитектурно-строительные рещения (при объединении в один комплект чертежей АР, АИ, КЖ, КД) — АС антикоррозионная защита конструкций — АЗ отопление, вентиляция и кондиционирование воздуха — ОВ внутренние водопровод и канализация — ВК наружные сети водоснабжения и кана.тизации — НВК.  [c.374]

В томе II рассматриваются вопросы радиационной защиты применительно к конкретным источникам излучения и основным ядернотехническим установкам. Освещаются, в частности, такие вопросы, как защита активной зоны реактора и теплоносителя, тепловой расчет защиты, защита от у-излучения при переработке делящихся материалов, радиационная безопасность в производствах урана и радия, защита ускорителей и радиационная защита при космических полетах.  [c.5]

Расчет радиационной защиты начинается с расчета интенсивности и пространственного распределения источников нейтронов и у-квантов деления в активной зоне реактора. При известном распределении этих источников в принципе возможно определение поля излучения во всей защите — поля быстрых, замедляющихся (промежуточных энергий) и тепловых нейтронов, а также картины ослабления в защите у-квантов, образующихся в результате деления ядер. При этом необходимо учитывать также и ослабляющие свойства материалов активной зоны,т. е. практически проводить совместный анализ распределения излучения в защите и в активной зоне. Однако возможен и другой подход — рассмотрение только лищь защиты или ее отдельной  [c.7]

С точки зрения расчета защиты реактора представляет интерес сравнить интенсивность потоков излучений, выходящих из активной зоны или отражателя различных типов реакторов. Эта интенсивность зависит от мощности реактора, его конструкции, назначения. Однако можно привести некоторые средние цифры. Так, в уран-графи-товом реакторе плотность потока нейтронов, падающих на защиту, достигает (1ч-2)-10 нейтрон/ (см сек), плотность потока энергии у-квантов 2-10 2 Мэв/ см сек)-, до 95% потока нейтронов составляют медленные и тепловые нейтроны. В водо-водяном реакторе плотность потока нейтронов, как правило, не превышает 1X ХЮ нейтрон/ см --сек), интенсивность потока энергии у-квантов 5-10 з Мэе/(см -сек), причем в спектре нейтронов примерно 50% быстрых и промежуточных. В реакторах на быстрых нейтронах плотность потока нейтронов составляет до 5-10 —1-10 нейтрон/ см -сек), плотность потока энергии у-квантов - 10 3 Мэе/ см --сек). Максимум в спектре нейтронов, падающих на защиту, обычно соответствует нейтронам с энергией 50—100 кэв. Для примера на рис. 9. 1 приведен спектр нейтронов, выходящих из быстрого реактора Ферми с натриевым теплоносителем. Он существенно мягче спектра нейтронов в активной зоне этого реактора и мягче спектра нейтронов деления, подробно описанного в 9. 2.  [c.9]



Смотреть страницы где упоминается термин Защита тепловая : [c.505]    [c.47]    [c.283]    [c.394]    [c.100]    [c.253]    [c.370]    [c.199]    [c.8]    [c.341]   
Применение композиционных материалов в технике Том 3 (1978) -- [ c.110 , c.112 ]

Главные циркуляционные насосы АЭС (1984) -- [ c.33 , c.147 ]

Основы техники ракетного полета (1979) -- [ c.187 , c.336 ]



ПОИСК



Автоматизация процесса горения. Тепловая защита и блокировка

Автоматические регуляторы процесса горения и тепловая защита

Активная тепловая защита аппарата

Аэродинамический нагрев и тепловая защита

Глава десятая Защита от совместного конвективного и радиационного теплового воздействия

Защита орбитального аппарата тепловая

Защита от теплового излучения —экраны

Защита тепловая комбинированным поглощением

Защита тепловая повреждения молнией

Работа низкотемпературных поверхностей нагрева и тепловые методы защиты их

Тепловая защита отсеков летательных аппаратов

Тепловые потери, изоляция и защита трубопроводов от коррозии



© 2025 Mash-xxl.info Реклама на сайте