Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материальные функции и метод их определения

Деформационная теория пластичности анизотропных сред обладает достаточной общностью, однако, ее применение при решении конкретных практических задач может вызвать затруднения, связанные с экспериментальным определением функций многих аргументов. В связи с этим возникает необходимость, с одной стороны, развития методов прогнозирования материальных функций анизотропных композитов по свойствам компонентов, с другой — разумного упрощения определяющих соотношений. В [204] рассмотрены понятия упрощенной теории, для которой к = (р = = О, рх = Ps. j j ), Р = P U j ), И простейшей теории к = у> = = 0, рх= Px(je ),  [c.109]


Разработан расчетно-экспериментальный метод определения материальных функций модели, включающей в себя стандартные испытания при пластическом деформировании, на малоцикловую усталость, ползучесть, длительную прочность и малоцикловую усталость с выдержками при сжатии.  [c.255]

Расчётно-экспериментальный метод определения материальных функций  [c.47]

Материальные функции и метод их определения  [c.57]

Для определения материальных функций проводятся такие же базовые испытания как и для теории пластического деформирования, но отдельно в условиях одноосного растяжения-сжатия и одноосного кручения. Далее на основе изложенного ранее расчётно-экспериментального метода определяются функция изотропного упрочнения, параметры анизотропного упрочнения и энергия разрушения при растяжении-сжатии (/i = l,/ia = 1) и при кручении (/i — О, fla = 0). Для определения показателей степеней п и m в уравнениях (2.121)-(2.125) необходимы такие же базовые испытания, но по лучевым траекториям напряжений в условиях двухосного напряжённого состояния при /и =  [c.58]

Первые семь материальных функций определяются при испытаниях в условиях пропорционального одноосного напряжённого состояния, и метод определения этих материальных функций изложен в 8 главы 1 части 2 и здесь рассматриваться не будет.  [c.67]

Определение материальных функций строится на основе изложенных в главах 1, 2, 3 части 2 расчётно-экспериментальных методах и экспериментальных данных при различных уровнях температуры и флюенса полученных в условиях изотермического нагружения и постоянного уровня флюенса.  [c.77]

Соотношения для траекторий деформаций малой и средней кривизны распространены на случай повторного нагружения после разгрузки в работах Москвитина и Городецкого [70, 189, 190. Приводится вариант связи напряжение деформация для одного класса сложных циклических нагружений. Указываются эксперименты для определения материальных функций и методы решения краевых задач.  [c.91]

В случае неконсервативной системы это общее определение может охватывать величины, которые обычно не считаются количествами движения (импульсами). Рассмотрим заряженную материальную точку, движущуюся в электромагнитном поле. Это пример неконсервативной системы, которая может быть описана методом Лагранжа. Как было указано в гл. III, функция Лагранжа имеет вид  [c.57]


Изучая движение материальных тел под действием сил, можно выделить весьма важный класс задач динамики, характерных тем, что некоторые из действующих на объект сил могут быть запрограммированы и реализованы в процессе движения человеком-пилотом (или автопилотом). Часть сил, приложенных к движущемуся объекту, конечно, определена (детерминирована) природой, а часть может изменяться в широких пределах по некоторым законам, заложенным в конструкцию летательного аппарата. Так, при изучении движения ракеты в поле тяготения Земли гравитационная сила вполне детерминирована (она, в первом приближении, подчиняется закону тяготения Ньютона), а реактивная сила может изменяться и регулироваться как по величине, так и по направлению. Каждому закону регулирования реактивной силы будет соответствовать некоторый закон движения ракеты. В современной ракетодинамике и динамике самолета такие задачи часто на> зывают задачами с управляющими (или свободными) функциями. Если управляющие функции все заданы и, следовательно, сделаны определенными все действующие силы, тогда мы будем иметь дело с обычной задачей теоретической механики найти закон движения объекта, если действующие на него силы неизвестны. Но выбор (задание) свободных функций можно подчинить некоторым, достаточно общим и широким, условиям оптимальности (экстремальности) и производить определение динамических характеристик для этих классов оптимальных движений. Метод проб или сравнений, лежащий в основе классических вариационных принципов, применим и здесь, но варьируется выбор управляющих функций, а не траекторий в пространстве конфигураций. Задачи такого рода имеют большое практическое значение в динамике полета ракет и самолетов, а также в теории автоматического регулирования-  [c.14]

Задача изучения криволинейного движения материальной точки под действием заданных сил состоит в решении (интегри ровании) системы (67) совместных дифференциальных уравнений второго порядка, т. е. в определении координат точки в функции времени. Общие методы решения системы (67) при произвольных /ь /а, /з пока не разработаны. Однако некоторые приемы построения решений системы (67) можно указать. Заметим, что, принимая в качестве основных законов механики законы Ньютона, мы с необходимостью приходим к выводу о том, что функции /ь 2, /з не могут зависеть от производных второго или более высокого порядка от х, у, г по времени, так как действие силы на материальную точку не зависит от того, имеет эта точка ускорение или нет (закон независимого действия сил).  [c.203]

Для численного интегрирования полученной системы уравнений разобьем выделенный объем среды точками г = г,- (t = l, 2,. ... .п) пап материальных частиц значения всех искомых функций будем определять в точках г = г, (t = l, 2,. .., п). Тогда четыре последних дифференциальных уравнения в частных производных по времени от переменных ссг, а, w, рг перейдут в 4п обыкновенных дифференциальных уравнения но времени, для численного интегрирования которых удобно использовать модифицированный метод Эйлера — Коши. Для определения значений давления Pi в точках f = r, в каждый фиксированный момент времени необходимо решать линейную (для pi ) краевую задачу для первого дифференциального (по г) уравнения второго порядка с краевыми условиями (6.7.17).  [c.85]

Информация для анализа качества должна отвечать определенным требованиям однородности, представительности, сопоставимости, объективности, информативности. Для обработки статистических данных необходимо использовать соответствующие методы математической статистики, теории случайных функций. Так, при анализе использования материально-  [c.53]

В настоящей главе изучение движения простейшей модели снаряда в виде одномерного движения материальной точки обобщено на случай двух- и трехмерного движения. Отсюда естественно возникает проблема оптимизации траектории, которая оказывается тесно связанной с целым рядом смежных проблем. Простейшей задачей из этого круга проблем является задача определения оптимального управления, когда динамические характеристики снаряда заданы и требуется найти такую траекторию, которая оптимизирует некоторую заданную величину. Для случаев, когда поле сил зависит от скорости и координат снаряда, дана общая постановка задачи оптимизации траектории, а в случаях, когда силовое поле однородно или когда сила зависит от расстояния линейно, оказывается возможным получить решение в замкнутой форме. Это особенно важно в применении к баллистическим снарядам (нанример, снарядам дальнего радиуса действия класса земля — земля или носителям спутников), где расстояние, проходимое за время выгорания топлива, мало по сравнению с земным радиусом. Простой и в то же время почти оптимальной траекторией в этих случаях оказывается траектория гравитационного разворота при движении снаряда в плотной атмосфере и затем переход на траекторию, определяемую соотношением (2.6). Хотя точного решения уравнений движения по траектории гравитационного разворота не существует, все же можно построить ряд графиков, позволяющих во многих случаях подбирать требуемые значения параметров. Если ограничиться лишь получением решений, удовлетворяющих условию стационарности, то обычными методами вариационного исчисления можно исследовать те задачи оптимизации, в которых масса снаряда, программа скорости истечения и время выгорания, так же как и программа управления, являются варьируемыми функциями. Для того чтобы найти решения, являющиеся действительно максимальными или минимальными в определенном смысле, нужно проводить специальное исследование каждого отдельного случая, так как не всегда решение, удовлетворяющее требованию стационарности, является оптимальным, и наоборот. В тех задачах, где скорость истечения есть известная функция времени, как, например, это имеет место в жидкостных ракетных двигателях, из анализа следует лишь то, что оптимальной программой для М ( ) будет, как правило, программа импульсного сжигания топлива. Поэтому для получения практически интересных результатов необходимо проводить более глубокий анализ, с учетом таких факторов, как параметры двигателя, топливных баков и т. д., при одновременном учете характера траектории полета снаряда. Для выполнения такого рода анализа используется схема расчета, где анализ различных элементов Конструкции и групп уравнений (одной  [c.63]


Одним из самых распространенных методов определения эффективных характеристик среды является метод теории случайных функций. В качестве модели, адекватной широкому классу композиционных материалов, является представление материальных тензоров как случайных макрооднородных полей. В этом методе тензор модулей упругости считается случайной функцией, представимой в виде суммы статистически среднего тензора модулей упрут ости и тензора, описывающего флуктуационные добавки. Принимается гипотеза эргодичности среднее по объему совпадает со средним статистическим. Допущение о малости флук— 1уаций позволяет пренебречь корреляционными функциями высших порядков и получить выражения для эффективных характеристик в корреляционном приближении, предложенном впервые в работе [33].  [c.19]

Сначала на примере неоднородного стержня показывается техника применения методики осреднения к нелинейным краевым задачам. С помощью этой методики задача о стержне решается точно. Затем подробно описывается решение квазистатической задачи неоднородной и анизотропной теории пластичности. Рассматриваются теория эффективного модуля и теория нулевого приближения. Большое место в главе уделяется построению теории малых упруго-пластических деформаций для анизотропной однородной среды. Для такой среды доказываются теорема единственности решения квазистатической задачи в перемещениях и напряжениях, теоремы о минимуме лагранжиана и максимума кастильяниана, теоремы о простом нагружении. Описывается схема экспериментов, необходимых для определения материальных функций исследуемой теории. Показано, как исходя из теории малых упруго-пластических деформаций А. А. Ильюшина для изотропной среды получить методом осреднения соотношения анизотропной теории пластичности.  [c.219]

Oh не захотел делать никаких предположений ни относительно внутреннего строения светоносного эфира, ни о характере взаимодействия молекул и принял лишь гипотезу, что свойства эфира подчиняются принципу сохранения энергии. Он утверждает Если... мы столь совершенно несведущи о способе взаимодействия между собой элементов светоносного эфира..., то, казалось бы, более осторожным методом было бы положить в основу наших рассуждений какой-либо общий физический принцип, чем постулировать какие-то определенные формы взаимодействия, которые в конечном счете могли бы оказаться весьма отличными от того механизма, который применен самой природой, в особенности, если этот принцип заключает в себе как частные случаи те, которые приняты Коши и другими, и приводит, сверх того, к более простой вычислительной процедуре. Принцип, принятый в качестве основы для рассуждения, содержащегося в предлагаемой статье, таков каким бы образом элементы данной материальной системы ни действовали бы друг на друга, полная сумма произведений внутренних сил на элементы тех направлений, по которым они действуют, для каждой заданной части массы должна быть всегда равна полному дифференциалу некоторой функции . Если мы обозначим эту функцию через <р и сочетаем принцип Далам-бера с принципом возможных перемещений, то получим уравнения движения для случая, когда внешние силы отсутствуют, из уравнения  [c.264]

При второй фазе движения R = = onst, но при этом падает давление на границе пласта, ф (В .) f (t)- В первом случае неизвестна R (t), во втором фТ (.flft) = / (<) Для их определения используется уравнение материального баланса. Принципиальной разницы в различных вариантах метода моментных соотношений нет. Они различаются только формой заданной функции / (Q, г, t).  [c.229]

Накопление опыта решения нелинейных задач при больших деформациях обязано применению полуобратного метода — метода, которым были достигнуты первые выдающиеся успехи и в линейной теории. На первом этапе процесса задаются предполагаемой формой осуществляемого преобразования R (г ( отсчетной неискаженной коифигурации в актуальную, содержащей подлежащие определению функции материальных координат, на втором —по этому заданию составляется выражение меры деформации, а по ней (из уравнения состояния материала) тензор напряжений (Коши Т или Пиола Р). Третий этап — по уравнениям равновесия в объеме и на поверхности находят распределения массовых н поверхностных сил, допускаемые предположенным заданием вектора места R. Требуется, чтобы так определяемые массовые силы соответствовали их заданиям, например, были постоянны (сила веса) или пропорциональны расстоянию от некоторой оси (центробежная сила). Чаще всего принимают к = 0, наперед предполагая, что напряженное состояние создается  [c.134]


Смотреть страницы где упоминается термин Материальные функции и метод их определения : [c.256]    [c.273]    [c.7]    [c.123]    [c.42]   
Смотреть главы в:

Неупругость Варианты теории  -> Материальные функции и метод их определения

Неупругость Варианты теории  -> Материальные функции и метод их определения

Неупругость Варианты теории  -> Материальные функции и метод их определения

Неупругость Варианты теории  -> Материальные функции и метод их определения



ПОИСК



Материальная

Метод материальный

Методы функций

Расчётно-экспериментальный метод определения материальных функций

Функция материальная

Я-функция, определение



© 2025 Mash-xxl.info Реклама на сайте