Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изменение свойств металла в процессе пластической деформации

Это затрудняет дальнейшую деформацию, вызывает повышение прочности и твердости металла, снижение пластичности и изменение физико-химических свойств. Совокупность изменений свойств металла в результате пластической деформации называется наклепом, или упрочнением. Наклеп наблюдается в основном в процессе холодной пластической деформации металлов и сплавов.  [c.284]


Наклеп. При пластической деформации поликристаллического металла изменяются его форма и размер. Это изменение связано с изменением формы зерен. Поэтому при пластической деформации металл претерпевает и структурные изменения, что ведет к изменению его свойств. В деформируемом металле с увеличением степени деформации увеличиваются его прочностные характеристики, т. е. изменение структуры металла в процессе пластической, деформации приводит к его упрочнению или наклепу. Упрочнением называется увеличение сопротивляемости сдвигу вследствие накопления (повышения плотности) дислокаций при пластической деформации. Продвижение дислокаций по кристаллу затрудняется в связи с накоплением их у препятствий — точечных дефектов кристаллов, дислокаций, границ зерен и т. п., в результате чего плотность дислокаций значительно возрастает. Так, предельная плотность дислокаций в упрочненном металле составляет 10 —10 на 1 см площади. Упрочнение вызывается также торможением дислокаций в связи с измельчением зерен, искажением решетки металла, возникновением напряжений. Осо-  [c.15]

Совокупность явлений, связанных с изменением механических и физико-химических свойств металлов в процессе пластической деформации, называется упрочнением (наклепом).  [c.41]

Пластическая деформация приводит к значительному изменению механических, физических и химических свойств металла. В деформируемом металле с увеличением степени деформации увеличиваются все показатели сопротивления деформированию пределы упругости, пропорциональности, текучести и прочности. Увеличивается также твердость металла. Одновременно с этим наблюдается уменьшение показателей пластичности (относительное удлинение, относительное сужение, ударная вязкость) увеличивается электрическое сопротивление, уменьшаются сопротивление коррозии, теплопроводность, изменяются магнитные свойства ферромагнитных металлов и т. п. Совокупность явлений, связанных с изменением механических и физико-химических свойств металлов в процессе пластической деформации, называется упрочнением (наклепом). До настоящего времени физическая природа упрочнения полностью не выяснена.  [c.39]

Степень механохимической неоднородности зависит от исходных свойств металла, способа и режимов сварки, применяемых сварочных материалов и др. Механическая и электрохимическая неоднородность взаимосвязаны между собой. Под действием термодеформационного цикла сварки в сталях и других сплавах образуются характерные зоны, различающиеся пластической деформацией и дислокационной структурой. Происходит изменение свойств металла вследствие процессов плавления и кристаллизации в сварном шве (III),  [c.93]


НО производить как в холодном, так и в горячем состоянии. В процессе пластической деформации металла в холодном состоянии вследствие деформирования микроструктуры твердость и хрупкость металла непрерывно увеличиваются, а пластичность и вязкость уменьшаются. Эти изменения свойств называют(наклепом). Они могут быть устранены, например с помощью термообра- тки (отжига). Процесс замены деформированных, вытянутых зерен новыми, равноосными, происходящий при определенных температурах, называют рекристаллизацией. Она происходит при температурах, лежащих выше так называемого температурного порога рекристаллизации (см. раздел 1.3). Горячая обработка давлением производится при температуре выше порога рекристаллизации, холодная — ниже. При температурах несколько ниже температурного порога рекристаллизации наблюдается явление, называемое возвратом. При возврате (отдыхе) размеры и форма деформированных, вытянутых зерен не изменяются, но в значительной степени снимаются остаточные напряжения, возникающие при литье, обработке давлением и т. д.  [c.299]

Пластическая деформация известна как эффективное средство формирования структуры металлов, сплавов и некоторых других материалов. В процессе деформации повышается плотность дислокаций, происходит измельчение зерна, растет концентрация точечных дефектов и дефектов упаковки. Совокупность этих изменений способствует образованию специфической микроструктуры. Основные закономерности формирования структуры в процессе пластической деформации определяются сочетанием параметров исходного структурного состояния материала и конкретными условиями деформирования, а также механикой процесса деформации. При прочих равных условиях основная роль в формировании структуры и свойств материала принадлежит механике процесса деформации — если она обеспечивает однородность напряженного и деформированного состояний по всему объему материала, то процесс деформации является наиболее эффективным.  [c.75]

Легирование является наиболее распространенным методом повышения механических свойств металлических материалов. Увеличение прочностных характеристик материалов происходит благодаря влиянию легируюш,их элементов на исходное состояние сплава и на его изменение в процессе пластической деформации и проявляется в повышении предела текучести и возникновении более интенсивного деформационного упрочнения. Известно, что при деформировании в металлах и сплавах происходит образование дислокаций и формирование определенной для каждого материала и условий дислокационной структуры. В связи с этим становится ясным, что в основе повышения прочности металлов и сплавов лежит взаимодействие дислокаций с барьерами, которыми могут быть различные дефекты, границы, растворимые атомы, включения или дисперсные частицы.  [c.76]

В металле, подвергнутом сварке, возникают необратимые физико-химические процессы, определяющие надежность конструкции в целом. Под действием сварки происходит а) изменение свойств металла вследствии процессов плавления и кристаллизации в сварном шве, структурных, фазовых изменений и разупрочнения в зоне термического влияния б) ухудшение напряженного состояния ввиду возникновения полей собственных упругих остаточных напряжений и пластических деформаций, геометрической технологической и конструктивной неоднородности в) концентрация в зоне сварного соединения различного вида неоднородностей — химической, структурной, фазовой собственных напряжений и деформаций геометрической, связанной как с опасностью возникновения технологических концентраторов, так и наличием конструктивных концентраторов. Как следствие указанных видов неоднородности возникает неоднородность механических, электрохимических и физических свойств, что определяет повышенную чувствительность сварных соединений к воздействию эксплуатационных сред, особенно в условиях сложного напряженного состояния.  [c.122]


На основании результатов обследования определяется техническое состояние резервуара. В основу оценки технического состояния резервуара положены представления о возможных отказах, имеющих следующие причины наличие в металле и сварных соединениях дефектов, возникших при изготовлении, монтаже, ремонте или эксплуатации, развитие которых может привести к разрушению элементов резервуара изменения геометрических размеров и формы элементов (в результате пластической деформации, коррозийного износа и т.п.) по отношению к первоначальным формам и размерам, вызывающие превышение действующих в металле напряжений по сравнению с расчетными напряжениями изменения структуры и механических свойств металла в процессе длительной эксплуатации, которые могут привести к снижению конструктивной прочности элементов резервуара (усталость при действии переменных и знакопеременных нагрузок, перегревы, действие чрезмерно высоких нагрузок и т.п.) нарушение герметичности листовых конструкций в результате коррозийных повреждений.  [c.270]

Обработка металлов давлением применима только к. металлам, обладающим достаточной пластичностью, и неприменима к хрупким металлам (нанример, к чугуну). Давлением обрабатывают сталь, медные, алюминиевые, магниевые и другие сплавы. Этот вид обработки является высокопроизводительным. Обработку давлением можно производить как в холодном, так и в горячем состоянии. В процессе пластической деформации металла в холодном состоянии вследствие деформирования микроструктуры твердость и хрупкость металла непрерывно увеличиваются, а пластичность и вязкость уменьшаются. Эти изменения свойств называют упрочнением (наклепом). Они могут быть устранены, например, с помощью термообработки (отжига). Процесс замены деформированных, вытянутых зерен новыми, равновесными, происходящий при определенных температурах, называют рекристаллизацией.  [c.145]

Изменение механических свойств металлов и в частности увеличение их прочностных характеристик в значительной степени объясняется искажениями пространственной кристаллической решетки, возникающими при пластической деформации металла, а также образованием обломков зерен, блокирующих перемещение слоев металла по поверхностям скольжения. Кроме того, рядом исследований доказано, что на изменение прочности в процессе деформирования некоторых сплавов оказывает влияние изменение их структурного состояния. Например, в процессе пластической деформации стали по плоскостям скольжения выделяются чрезвычайно мелкие (субмикроскопические) частицы карбидов, блокирующие сдвиги и способствующие упрочнению металла.  [c.41]

Изменения свойств металла в зоне шва в результате сосредоточенного местного теплового воздействия связаны с процессами плавления, кристаллизации, возможными структурными превращениями, а также с местными пластическими деформациями. Степень изменения свойств металла в районе шва зависит не только от теплового режима процесса сварки, который определяется выбором его параметров, но и от свойств основного металла. Соответствующим выбором режима сварки, а также применением специальных мер таких, как предварительный подогрев изделия перед сваркой, а также последующая его термическая обработка, можно ограничить степень изменения свойств металла в районе шва при сварке даже достаточно сложных легированных сталей. В отдельных случаях такие специальные меры необходимы, и они находят применение в промышленности при изготовлении некоторых изделий из легированных сталей. Однако эти меры значительно усложняют процесс изготовления и поэтому для широкого круга металлических конструкций они нецелесообразны.  [c.12]

Приведены обобщенные данные изменения механических свойств металлов и сплавов при обработке давлением, а также основные методы механических испытаний в горячем и холодном состояниях. Проанализировано влияние различных факторов на изменение механических свойств в процессе пластической деформации. Приведены данные о пластичности, твердости и химическом составе различных металлов, сталей и сплавов.  [c.2]

Если процесс сварки давлением с нагревом осуществлять в вакууме, то поверхность металла будет не только предохраняться от дальнейшего загрязнения, например, окисления, ной очищаться в результате процессов десорбции, возгонки или диффузии в глубь соединяемых металлов. Указанным способом можно достичь установления металлической связи по поверхности контакта. Однако в ряде случаев установление связи не обеспечивает требуемой прочности и качества соединений. Надежность и прочность соединения возрастают, если зона соединения расширяется и приобретает объемный характер. Расширение зоны соединения осуществляется в результате дальнейшего массопереноса — взаимной диффузии. В зависимости от температуры сварки диффузионные процессы влияют на рекристаллизацию и образование переходной зоны. При значительном отличии физических и химических свойств свариваемых материалов эта зона может являться зоной перестройки химических связей и состава. В ней может также происходить постепенное изменение типа и параметров кристаллических решеток и ряда физических свойств соединяемых материалов (от свойств, присущих одному из соединяемых материалов, до свойств, присущих другому). Таким образом, получение монолитного соединения при сварке давлением невозможно без образования связей на атомарном уровне, возникших в результате сближения контактных поверхностей в процессе пластической деформации. Надежность и прочность соединения возрастают при расширении зоны соединения путем взаимной диффузии при нагреве соединяемых материалов.  [c.16]


Решение этой проблемы - задача не простая. Прежде всего, наибольшую сложность в эту проблему вносят концентраторы напряжений, в том числе различные дефекты сварных соединений и основного металла, которые приводят к крайне неравномерному распределению напряжений и деформаций, возникновению локализованных пластических деформаций, изменению свойств металла из-за деформационного охрупчивания и старения и др. Кроме того, в расчетах ресурса безопасной эксплуатации необходимо учитывать повреждаемость металла во времени, что дополнительно усложняет решение подобных задач. Особую сложность представляет оценка ресурса элементов оборудования при одновременном действии нескольких повреждающих во времени факторов с учетом различного рода дефектов, в том числе и трещиноподобных. Заметим также, что практически открытой остается проблема старения металла в процессе эксплуатации оборудования.  [c.329]

Упругие рещения задач по определению величины коэффициента интенсивности напряжения для различной геометрии образца и формы трещины, в том числе и в случае учета процесса пластической деформации у кончика трещины [10-14], исходят из условия развития разрушения в сплошной среде и не рассматривают свойства металлов. В описании роста трещин свойства металла учитывают через величину коэффициента пропорциональности между скоростью роста усталостной трещины и ее длиной. При этом традиционно считается, что свойство среды сопротивляться росту трещин в направлении развития разрушения остается неизменным, и при этом не учитывается дискретное изменение масштабов протекания процессов пластической деформации в вершине распро-  [c.236]

Основным фактором, определяющим изменение строения и свойств металла в результате холодной пластической деформации, является накопленная энергия в деформированном металле, которая связана с изменением дислокационной структуры. Эта накопленная (скрытая) энергия деформирования определяет необратимые процессы в зерне, которые вызывают последующие изменения дислокационной структуры материала в условиях эксплуатации и определяют жаропрочные свойства стали.  [c.26]

Образование точечных дефектов при холодной деформации. Точечные дефекты возникают в результате пластической деформации. Этот эффект можно обнаружить, если производить деформацию при низкой температуре (например, в жидком азоте), а затем последовательно измерять изменение электросопротивления при нагреве при температурах ниже той, при которой происходит сколько-нибудь заметный возврат механических свойств. Вначале предполагали, что при этом почти весь вклад в изменение электросопротивления вносят точечные дефекты, поскольку дислокации в наклепанном металле удерживаются за счет упругого взаимодействия, которое не зависит от температуры. В дальнейшем было показано, что и при низкотемпературном отжиге происходят термически активируемые процессы, в которых могут принимать участие дислокации [18, с. 7]. Поэтому полученные в этих опытах результаты требуют более осторожной трактовки.  [c.53]

Поверхности раздела в кристаллах — границы зерен и субграницы, границы фаз, внешняя поверхность — какова бы ни была их физическая модель являются средоточием структурных дефектов (дислокаций, избыточных вакансий) и, следовательно, создают пути облегченной диффузии. Аналогичное влияние должны оказывать нарушения, возникающие в результате пластической деформации, облучения частицами высоких энергий, фазовых превращений и растворения чужеродных атомов. Диффузия в связи с особенностями тонкой структуры металла определяет во многих случаях кинетику сложных процессов, изменение структуры и в конечном счете изменение свойств металлического сплава.  [c.118]

В этом диапазоне температур наблюдается изменение прочностных (Од 2, Ojj) и пластических (б, свойств. При снижении температуры возрастают значения прочностных (Oq 2> и снижаются значения пластических (5, гр) характеристик металлов. Участие ограниченной пластической деформации в процессе хрупкого разрушения отражается в строении хрупких изломов. Типичный пример шевронное строение кристаллических изломов в листовых и трубчатых конструкциях (рис. 2.17). Вершина треугольных по форме ступенек на поверхности разрушения указывает, откуда пришла трещина. В практике анализа причин хрупкого разрушения шевронный излом позволяет в протяженных металлоконструкциях установить очаг разрушения.  [c.38]

Стадийность процессов пластической деформации и разрушения в работах [18, 19] рассматривается с учетом удельной энергии пластической деформации. Авторы выделяют три стадии на кривой деформации I - стадию интенсивного упрочнения, II - стадию обратимой повреждаемости и III - стадию необратимой повреждаемости. Каждой из этих стадий соответствует вполне определенное изменение структуры и ряда механических и физических свойств, что позволяет определять напряжение и соответствующую степень деформации, при достижении которых в металле возникает обратимая и необратимая повреждаемость так же, как и удельную энергию, расходуемую на развитие указанных процессов. В работе [20] показано, что изменение коэрцитивной силы также чувствительно к структурным изменениям, происходящим на разных стадиях деформирования углеродистых сталей, а С.Е. Гуревич и Т.С. МарьяновСкая [21] исследовали стадийность повреждения при статическом деформировании с использованием критерия Механики разрушения  [c.40]

Одновременно с изменением формы зерен в процессе деформации происходит поворот кристаллографических осей отдельных зерен в пространстве. По мере протекания пластической деформации разница в направлении этих осей отдельных зерен уменьшается,- а плоскости скольжения Стремятся расположиться по направлению наиболее интенсивного течения металла. Это приводит к тому, что при значительных степенях деформации металла в холодном состоянии возникает преимущественная ориентировка кристаллографических осей зерен поликристалла, называемая текстурой. Образование текстуры сопровождается появлением анизотропии механических и физических свойств металла.  [c.118]

Упругие деформации. Не менее важным фактором, который следует учитывать в процессе пластического изгиба труб, являются упругие деформации. Проявление упругих свойств металла после снятия внешних нагрузок выражается в искажении формы, приданной изделию в процессе деформирования, в изменении кривизны и угла изгиба деталей.  [c.50]

Рекристаллизация — изменение формы зерен холоднодеформированного металла при нагреве зерна из вытянутых вдоль направления прокатки становятся равноосными при этом происходит восстановление прежних (до наклепа) пластических свойств. Рекристаллизация в процессе холодной прокатки производится путем промежуточного отжига — нагрева металла до повышенной температуры. При горячей прокатке процесс рекристаллизации протекает практически мгновенно вслед за деформацией металла. Частичное возвращение пластических свойств металла без изменения его структуры (явление возврата) заметно проявляется при температурах выше 0,25— 0,3 (Т.,,— абсолютная температура плавления ). В частности, возможность холодной прокатки без отжига до очень высоких степеней деформации объясняется исключительно высокой скоростью деформации, сопровождаемой частичным разупрочнением посредством возврата. Явление же собственно рекристаллизации для чистых металлов наблюдается, согласно Бочвару, при температурах выше 0,4 Гп., (табл. 49).  [c.289]


Термическая пластичность является единственным способом изме- нения формы аморфных тел, таких, как смола, воск, пластмассы других. В кристаллических телах имеется как термическая, так атермическая пластичность. При этом термическая пластичность прн всех температурах является сопутствующим способом изменения формы, а не самостоятельным, и отделить количественно термическую пластичность от атермической затруднительно. Термическая пластичность имеется при всех температурах, кроме абсолютного нуля, но заметное влияние на ход процесса пластической деформации термическая пластичность оказывает при температурах, превышающих температуру возврата. Чем больше термическая пластичность, тем интенсивнее происходит направленный обмен атомов местами, тем в большей степени проявляются пластические свойства металла.  [c.53]

Все эти процессы упругопластического деформирования, молекулярного взаимодействия, тепловые, окислительные и вызываемые ими изменения физико-механических и химических свойств металлов в поверхностно-активном слое в конечном счете и определяют изнашивание трущихся поверхностей реальных деталей машин. Анализируя эти процессы, И. В. Крагельский обращает внимание на двойственную молекулярно-механическую их природу молекулярное взаимодействие обусловлено взаимным притяжением двух твердых тел, их адгезией механическое — взаи.м-ным внедрением элементов сжатых поверхностей. Он выделяет пять основных видов нарушения фрикционных связей, обусловливающих характер изнашивания (рис. 25). Упругое оттеснение материала / характеризуется отсутствием остаточных деформаций. Разрушение в зонах фактического касания и отделение частиц износа происходит лишь после многократного повторения нагружения. Пластическое оттеснение материала // характеризуется появлением остаточной (пластической) деформации. Число циклов нагружения, приводящее к разрушению основы, сравнительно мало (малоцикловая усталость). С увеличением нагрузки  [c.75]

Теория кривых упрочнения. Упрочнением называется процесс изменения физико-механических свойств металлов в результате его пластической деформации.  [c.11]

При вибрационной нагрузке разрушение, как правило, происходит при напряжениях ниже предела текучести и поэтому, в отличие от случаев разрушения статической нагрузкой и ударом, не сопровождается пластическими деформациями. В связи с этим предел выносливости элементов конструкций в сильной степени зависит от концентрации напряжений, а также от местного изменения свойств металла, которое возможно при различных технологических воздействиях в процессе изготовления конструкций. По тем же причинам влияние остаточных напряжений при вибрационной нагрузке должно проявляться более заметно, чем при статической нагрузке и ударе, при которых значительные пластические деформации, происходящие в процессе нагружения, устраняют остаточные напряжения.  [c.112]

Наклеп металла. В процессе резания пластическая деформация происходит не только в срезаемом слое, но и в поверхностном слое основной массы металла. Пластическое деформирование вызывает изменение физических свойств металла повышает его твердость, снижает относительное удлинение и ударную вязкость. Зона упрочнения при резании показана на рис. 28. Наибольшее упрочнение получает металл стружки. Твердость стружки может стать выше твердости обрабатываемого материала в 1,5— 4 раза.  [c.37]

В зависимости от природы трущихся тел и внешних условий трения пластические деформации и, обусловленные ими искажения решетки могут способствовать развитию некоторых вторичных процессов. Изменяется химическая активность металлов, возрастает скорость диффузии, облегчаются условия схватывания металлов при совместном пластическом деформировании й стимулируется распад пересыщенных твердых растворов. Значительная часть работы, затрачиваемой на деформацию внешних слоев, преобразуется в теплоту трения. Изменение структуры и свойств металлов в сочетании с рядом вторичных процессов нередко приводят и к изменению характера разрушения соприкасающихся поверхностей при заданных условиях нагружения.  [c.70]

Изменение энергии и физико-механических свойств в процессе пластической деформации. Пластическая деформация — это процесс возникновения и необратимого движения дислокаций, вакансий и других несовершенств кристаллической решетки и их взаимодействия между собой и с другими дефектами. Вследствие этого внутренняя энергия пластически деформированных металлов и сплавов возрастает. Величина дополнительной энергии (скрытая энергия наклепа) равна той доле механической энергии деформации, которая накапливается в материале и остается в нем по окончании действия внешнних сил.  [c.25]

Упруго-пластическая деформация поверхностного слоя в процессе механической обработки вызывает изменение структурночувствительных физико-механических и химических свойств в металле поверхностного слоя по сравнению с исходным его состоянием. В деформированном поверхностном слое возрастают все характеристики сопротивления деформированию пределы упругости, текучести, прочности, усталости. Изменяются характеристики прочности при длительном статическом и циклическом нагружении в условиях высоких температур. Снижаются характеристики пластичности относительное удлинение и сужение, повышается хрупкость (уменьшается ударная вязкость), твердость, внутреннее трение, уменьшается плотность. Металл в результате пластической деформации упрочняется.  [c.50]

Если подвергнуть металл обработке давлением при комнатной температуре, то в нем протекают процессы пластической деформации, которые изменяют не только форму и размеры заготовки, но и физико-механические и химические свойства металла — увеличиваются прочность и твердость, уменьшается пластичность, увеличивается электрическое сопротивление, снилоются сопротивление коррозии и теплопроводность. Совокупность явлений, связанных с изменением свойств в процессе пластической деформации, называют упрочнением или наклепом металла. Предполагают, что упрочнение связано с искажением кристаллической решетки деформированного металла и возникновением различного рода дефектов решетки.  [c.364]

Впоследствии было выяснено, что истиннс хрупкое разрушение может происходить лишь в очень немногих случаях.. В основном же, при росте трещины перед ее кончиком всегда возникает, так называемая, пластическая зона. По своей структуре и свойствам пластическгл зона напоминает металл в состоянии, близком к расплавленному. Изменение структуры материала в пределах пластической зоны -называется пластической деформацией. При наличии пластической деформации происходит иязкое разрушение. Оно наблюдается в пластичных материалах, когда пластическая деформация материала достигает такой величины, что он разделяется на две части. Разрушение происходит в результате процесса зарождения, слияния, и распространения внутренних пор. Подробно механизмы протекания пластической деформации будут описаны в главе 4.  [c.19]

Физические методы исследования, включая тепловую микроскопию, полюгают раскрыть реальный смысл указанных структурных параметров и уточнить кинетические уравнения, описывающие их изменение. Кроме того, тепловая микроскопия наряду с микроструктурным изучением процессов пластической деформации и разрушения конструкционных металлических и других материалов в условиях высокотемпературного нагрева или охлаждения до криогенных температур вносит большой вклад в разработку физических основ термической и других видов упрочняющей обработки металлов и сплавов. Вполне понятно, что для осуществления таких изысканий экспериментатор должен обладать достаточным арсеналом методов и средств непосредственного изучения строения и свойств металлических материалов в условиях высокотемпературного нагрева или глубокого охлаждения.  [c.6]

Уменьшение сил трения при тонком слое смазки объясняется не только заш,итной ролью пленки смазки, равномерно распределяющей давление, но и пластифицированием тонкого поверхностного слоя — эффектом П. А. Ребиндера. В процессе трения и износа металлов происходят упругое и пластическое деформирования микронеровностей и пластическое течение в твердых поверхностных слоях, приводящее к пластическому износу — изменению размера трущихся тел без заметного разрущения их поверхности повторные микропластические деформации при периодических встречах микронеровностей, приводящие к усталостному разрушению поверхностей изменение механических и физических свойств поверхностных слоев металла вследствие глубокозаходящей пластической деформации.  [c.279]


Характерная особенность контактного взаимодействия твердых тел — локализация деформации в тонком поверхностном слое, толщина которого может быть меньше 1 мкм. При этом процесс. пластического деформирования протекает в условиях относи тельно высоких температур и давлений, а тончайшие поверхностные слои обладают повышенной физической и химической активностью. В связи с этим при анализе поверхностей трения особенно важна возможность исследования методами, которые не портят поверхность и не требуют дополнительной ее обработки, как, например, при использовании просвечивающей электронной микр Ьскопии. Для исследования структурных изменений по глубине поверхностных слоев используют обычно химическое травление или электролитическое полирование. Однако процесс снятия слоев сопровождается перераспределением структурных несовершенств в металле, возникновением значительных микро-и макронапряжений. Наличие при трении градиента свойств металла по глубине зоны деформации усугубляет недостатки применения дополнительной обработки при исследовании поверхностей трения.  [c.77]

При холодной обработке давлением происходят существенные изменения свойств металла. Эти изменения свойств прежде всего оказывают больщое влияние на условия протекания процесса пластической деформации. Холодная обработка давлением в сочетании с термической обработкой является мощным и во многих случаях единственным средством улучшения эксплуатационных свойств металлов.  [c.122]

Предлагаемая монография посвящена изложению результатов исследований эффекта адсорбционного понижения прочности и облегчения деформации металлов в разных его проявлениях. Этот весьд1а общий эффект влияния физико-химических факторов на механические свойства деформируемых твердых тел заслуживает особого внимания исследователей и производственников, так как позволяет управлять процессами пластической деформации и разрушения, а следовательно, и обработкой твердых тел, в особенности металлов. Совокупность своеобразных физико-химических явлений, объединяемых обхцим понятием адсорбционного понижения прочности, наиболее ярко обнаруживает влияние поверхностной энергии и ее изменений, на поведение деформируемого твердого тела в связи с особенностями его реальной структуры, характеризующейся разнообразными дефектами.  [c.3]

В процессе термопластического цикла сварки осуществляется довольно сложное изменение свойств металла под влиянием термического воздействия, пластической деформации и старения металла. Особенно значительными могут оказаться изменения свойств металла, если эти процессы протекают в зоне концент-ратооа деформаций (см. рис. 9-14).  [c.275]


Смотреть страницы где упоминается термин Изменение свойств металла в процессе пластической деформации : [c.43]    [c.75]    [c.245]    [c.79]    [c.69]    [c.11]    [c.231]   
Смотреть главы в:

Проектирование и производство заготовок в машиностроении  -> Изменение свойств металла в процессе пластической деформации



ПОИСК



Деформация металла, пластическая

Деформация пластическая

Изменение свойств

Металлов Свойства

Металлы деформация

Пластическая деформаци

Пластические свойства



© 2025 Mash-xxl.info Реклама на сайте