Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты кристаллов точечные

Рассмотрим две кристаллические решетки одну реальную, содержащую дефекты различного типа, и другую — идеальную, не содержащую никаких дефектов. Предположим, что в реальной решетке имеются только искажения, вызванные упругими деформациями, тепловыми колебаниями атомов и т. п. В этом случае, несмотря на некоторые нарушения структуры, можно безошибочно указать, к каким узлам решетки идеального кристалла относятся соответствующие атомы в реальном кристалле. Взаимно однозначное соответствие между атомами реального и идеального кристаллов можно установить и при наличии в реальном кристалле точечных дефектов. При этом в ряде мест реальной решетки атомы могут отсутствовать, в каких-то местах могут появиться лишние атомы, но в остальном она будет совпадать с идеальной. Любую область реального кристалла, где можно установить взаимно однозначное соответствие с идеальным кристаллом, называют областью хорошего кристалла. Участки, где такое соответствие установить нельзя, называют областью плохого кристалла.  [c.98]


Структурные несовершенства (дефекты) кристаллов по геометрическому признаку подразделяют на четыре группы 1) точечные 2) линейные 3) поверхностные (или плоские) 4) объемные.  [c.27]

Несовершенства строения реального кристалла (точечные дефекты, дислокация, деформации и т. д.), ес-МШ их присутствие не ведёт к изменению рассеивающей  [c.75]

В ионных кристаллах точечные дефекты возникают парами две вакансии противоположного знака — дефект Шоттки межузельный ион и оставленная им вакансия — дефект Френкеля.  [c.33]

Некоторые дефекты, например точечные отверстия в изолирующих пленках, не удается выявить с помощью только оптических средств. В этих случаях применяют различные химические методы в сочетании с последующим оптическим контролем. Так, для обнаружения точечных дефектов в двуокиси кремния может быть применен электролиз в ванне из метилового спирта с использованием в качестве анода (или катода) различных участков (или токопроводящих поверхностей) кристалла дефектной микросхемы.  [c.463]

Давно установлено несоответствие между реальной прочностью кристалла и теоретической, рассчитанной на основании оценки сил взаимодействия между атомами кристаллической решетки. Это несоответствие является следствием наличия в реальных кристаллах дефектов. Различают точечные, линейные, поверхностные и трехмерные дефекты кристаллов.  [c.57]

Наиболее суш ественное влияние на оптические характеристики кристаллов НБС оказывают неоднородности объемного распределения дефектов, связанные с неравномерным распределением примесей и нарушением стехио-метрического состава. Отклонение от стехиометрии ведет к появлению в кристалле точечных дефектов и непосредственно влияет на их суммарную концентрацию.  [c.143]

Наклеп. При пластической деформации поликристаллического металла изменяются его форма и размер. Это изменение связано с изменением формы зерен. Поэтому при пластической деформации металл претерпевает и структурные изменения, что ведет к изменению его свойств. В деформируемом металле с увеличением степени деформации увеличиваются его прочностные характеристики, т. е. изменение структуры металла в процессе пластической, деформации приводит к его упрочнению или наклепу. Упрочнением называется увеличение сопротивляемости сдвигу вследствие накопления (повышения плотности) дислокаций при пластической деформации. Продвижение дислокаций по кристаллу затрудняется в связи с накоплением их у препятствий — точечных дефектов кристаллов, дислокаций, границ зерен и т. п., в результате чего плотность дислокаций значительно возрастает. Так, предельная плотность дислокаций в упрочненном металле составляет 10 —10 на 1 см площади. Упрочнение вызывается также торможением дислокаций в связи с измельчением зерен, искажением решетки металла, возникновением напряжений. Осо-  [c.15]


Дальнейшее развитие этой теории с учетом многочисленных дефектов кристалла, особенно дислокаций (см.10.3.2), приводит снова к схеме Уббелоде, который принимал во внимание кооперативные дефекты кристалла. Кооперативными называются такие дефекты, энергия образования которых уменьшается благодаря дефектам в соседних областях решетки (по сравнению с образованием изолированного точечного дефекта).  [c.194]

В противоположность поверхностной энергии жидкостей измерить свободную поверхностную энергию кристаллов значительно труднее, при этом данные, полученные различными методами, колеблются в широких пределах, часто различаясь в несколько раз. Этот разброс обусловлен прежде всего влиянием условий опыта и влиянием реальной структуры кристаллов. Наличие различных элементарных дефектов (например, точечные дефекты, отдельные дислокации или их скопления возле границ зерен и т. д.) и микроскопических нарушений (например, микротрещины, которые являются источником концентрации напряжений) или других видов неоднородности (например, скопления химических загрязнений) влияет на поверхностную энергию. В ряде случаев разброс вызывается влиянием адсорбционных явлений на границе фаз кристалл — окружающая среда, так как теоретические значения а справедливы для поверхности раздела кристалл — вакуум. В то же время во многих случаях измеряют значения поверхностных энергий не достаточно чистых поверхностей. Поэтому для различных граней кристалла, существует только несколько достоверных значений а.  [c.256]

Различают два основных класса кристаллических дефектов дефекты, для которых можно определить усредненную периодическую решетку, и дефекты, для которых это сделать невозможно. Такая классификация искусственна и несовершенна, но она дает удобную отправную точку для дальнейшего рассмотрения. Первый класс дефектов включает в себя в основном локализованные дефекты, включая точечные, такие, как вакансии, атомы внедрения и замещения сюда также относятся небольшие группы точечных дефектов и локализованные поля напряжений, связанные с точечными дефектами или их группами. В этих случаях дефект окружен трехмерным объемом кристалла, который характеризуется усредненной периодичностью и является системой отсчета или основой, относительно которой измеряются отклонения. Наиболее часто встречающийся пример отклонения от идеальной периодической кристаллической решетки получается в результате тепловых колебаний атомов вокруг своих средних положений в решетке.  [c.149]

Атомная вакансия — точечный дефект кристалла, характеризующийся отсутствием в узле кристаллической решетки атома, который по своей природе должен находиться в этом месте.  [c.39]

Атом в междоузлии —точечный дефект кристалла, характеризующийся наличием любого внедренного агома между узлами кристаллической решетки.  [c.40]

На основании ряда работ можно отметить значительную роль в упрочнении г. п. кристаллов точечных дефектов. Вследствие сравнительно низкой энергии образования вакансий в структурах г. п. их концентрация должна быть высокой. Поэтому начало области II (или В) связывается с образованием сидячих петель, представляющих препятствия ближнего порядка.  [c.211]

В ионных и ковалентных кристаллах точечные дефекты электрически активны и могут служить донорами или акцепторами электронов, что создает в кристалле определенный тип проводимости.  [c.36]

Реально структура кристаллов отличается от приведенных идеальных схем, в них имеются дефекты. Точечными, нуль-мерными (по протяженности), дефектами являются пустые узлы, или вакансии (рис. 6, а) и межузельные атомы (рис. 6, б) число этих дефектов возрастает с повышением температуры. Важнейшими линейными (одномерными) дефектами являются дислокации (краевые и винтовые), представляющие как бы сдвиг части кристаллической решетки (см. линию ММ на рис. 6, в). Поверхностные (двухмерные) дефекты определяются наличием субзерен или блоков 1, 2 внутри кристалла (рис. 6, г), а также различной ориентацией кристаллических решеток зерен 3, 4 (рис. 6, д). По границам зерен решетка одного кристалла переходит в решетку другого, здесь нарушена симметрия расположения атомов. Дефекты кристаллов оказывают существенное влияние на механические, физические, химические и технологические свойства металлов (см. пр. 4).  [c.19]

Если уширение первого порядка не так велико, чтобы препятствовать наблюдению побочных линий, то их ширину и форму можно вычислить, делая определенные предположения о природе дефектов кристаллов, вызываюш их эти уширения. Предполагая, что точечные дефекты распределены случайно, можно легко предсказать форму и ширину линии, уширенной квадрупольными взаимодействиями первого порядка, для двух предельных случаев большой и малой концентраций дефектов [9].  [c.223]


Высокочастотные звуковые волны в газах, жидкостях и твердых телах являются мощным средством исследования движений молекул, дефектов кристаллов, доменных границ и прочих типов движений, возможных в этих средах. Более того, волны большой и малой амплитуды в этих средах находят важные применения в различных технических устройствах. Сюда относятся лпнии задержки для накопления информации, механические и электромеханические фильтры для разделения каналов связи, приборы для ультразвуковой очистки, дефектоскопии, контроля, измерения, обработки, сварки, пайки, полимеризации, гомогенизации и др., а также устройства, используемые в медицинской диагностике, хирургии и терапии. Контрольно-аналитические применения звуковых волн, так же как и их использование в технических устройствах, быстро разрастаются. За последние пять лет изучены такие явления, как затухание звука вследствие фонон-фононного взаимодействия, взаимодействие звука с электронами и магнитным полем, взаимодействие звуковых волн со спинами ядер и спинами электронов, затухание, вызываемое движением точечных и линейных дефектов (дислокаций), а также такие крупномасштабные движения, как движение полимерных сегментов и цепочек и движение доменных границ. Таким образом, очевидно, что эта область науки, получившая название физической акустики, является мощным инструментом исследования и открывает широкие возможности для различных технических применений.  [c.9]

Следует иметь в виду тот факт, что при образовании дефектов кристалл в целом остается электронейтральным. Выполнение этого условия обеспечивается образованием равного количества положительно и отрицательно заряженных дефектов, образованием электрически неактивных сложных дефектов или же образованием свободных электронов или дырок. Нейтрализация дефектов решетки с помощью электронов и дырок тем более вероятна, чем больше их в разрешенных зонах, то есть чем уже запрещенная зона. В кристаллах с широкой запрещенной зоной более вероятна нейтрализация точечных дефектов путем образования равного количества противоположно заряженных дефектов (вторичные дефекты). Например, в некоторых кристаллах избыток анионов В приводит к тому, что катионные вакансии становятся донорами А+, а избыток катионов — к тому, что анионные вакансии становятся акцепторами. При этом образуется такое количество вторичных дефектов, которое необходимо для обеспечения электронейтральности кристалла.  [c.92]

Дислокации представляют собой дефекты кристаллического строения, вызывающие нарушения правильного расположения атомов на расстояниях, значительно больших, чем постоянная решетки. Они возникают случайно при росте кристалла и термодинамически неравновесны. Причинами образования дислокаций могут быть также конденсация вакансий, скопление примесей, действие высоких напряжений. Процесс преобразования скоплений точечных дефектов в линейные идет с уменьшением свободной энергии кристалла.  [c.470]

Кроме парных дефектов, по Френкелю, в кристаллах имеются и одиночные точечные дефекты — вакансии, впервые рассмотренные В. Шоттки (рис. 3.5).  [c.87]

Образование точечных дефектов требует значительных затрат энергии. Эта энергия находится в прямой зависимости от прочности химических связей и пропорциональна энергии связи в кристалле. Так, чтобы создать вакансию в кристалле германия или кремния, надо разорвать четыре ковалентные связи. Вычисления показывают, что энергия образования вакансии в германии равна примерно 3,2-10-- 9 Дж (2 эВ), а в кремнии 3,7-Ю- Дж (2,3 эВ). Однако несмотря на это, при относительно высоких температурах существование дефектов является энергетически выгодным. Дело в том, что введение дефектов не только увеличивает внутреннюю энергию кристалла, но и увеличивает его энтропию. Таким образом, для заданной термодинамической температуры Т свободная энергия F—E—TS минимальна при некоторой концентрации дефектов. Последняя определяется балансом энергетической и энтропийной составляющих F.  [c.88]

При традиционном описании процесса пластической деформации исходят из того, что существующие в кристаллах системы скольжения позволяют обеспечить его формирование без разрушения сплошности. В.Е. Паниным и др. [11] было доказано, что пластическое течение происходит одновременно на нескольких уровнях, причем трансляция на одном уровне обязательно сопровождается поворотом на более высоком уровне, и наоборот. Принципиально важным в этом подходе является то, что любое нарушение структуры кристалла при подводе к нему внешней энергии рассматривается с позиции самоорганизации локальных структур, обусловленной энтропийными эффектами. Вторичные структуры, формирующиеся в деформируемом кристалле при достижении необходимого уровня возбуждения, представляют совокупность локальных структур - от дефектов типа точечных или линейных до аморфного состояния, возникающего при высокой плотности дефектов. Таким образом, при анализе пластической деформации кристаллов необходимо учитывать кооперативное взаимодействие трансляции, ответственной за изменение формы (дисторсии), и ротации, ответственной за изменение объема (дилатации). При этом важную роль в распространении скольжения играют границы зерен. Эволюция скольжения включает образование полос скольжения на начальных этапах пластической деформации, которые потом трансформируются в полосы микроскопического сдвига, что приводит к возникновению зоны локализованной макропластической деформации, проходящей через весь объем. Переход от одного масштабного уровня (микрополосы) к другому (макротюлосы) являет собой неустойчивость пластической деформации, предопределяющую шейко-образование. Он характеризуется тем, что шменяются элементарные носители деформации - дислокации сменяются дисклинациями. Дисклинации являются более энергоемкими дефектами, чем дислокации, что позволяет системе про-  [c.241]


По аналогии с точечными, линейными и поверхностными дефектами можно наметить группу объемных дефектов. Объемные дефекты согласно классификации не являются малыми во всех трех измерениях. К ним можно отнести скопления точечных дефектов типа пор, а также системы дислокаций, распределенных в объеме кристалла. Другими словами, благодаря наличию в кристалле точечных, линейных и плоских дефектов кристаллическая решетка может отклоняться от идеальной структуры в больших объемах кристалла. Кроме того, к объемным дефектам, например в монокристалле, можно отнести кристаллики с иной структурой или ориентацией решетки. В структуре кристалла будут значительные различия между центром дефекта и матрицей, а в матрице возникнут смещения атомов, убывающие с удалением от ядра дефекта. Таким образом, наличие фаз, дисперсных выделений, различных включений, в том числе неметаллических, неравномерность распределения напряжений и деформаций в макрообъемах также относятся к объемным дефектам.  [c.42]

Внедренные атомы являются точечными дефектами кристаллической решетки металла, вызывающими ее деформацию. Такая деформация, в частности, может иметь характер тетрагональных искажений, существенных для понимания свойств мартенситных фаз. Поля деформаций вызывают появление сил деформационного взаимодействия между внедренными атомами, важного для понимания ряда яв.лепий, происходящих в сплавах внедрения. В главе I, имеющей вводный характер, даетСуЧ обзор теорий точечных дефеютов кристаллической решетки металлов и сплавов, который мон ет иметь и самостоятельный интерес для специалистов, работающих в области физики неидеальных кристаллов. Точечные дефекты рассматриваются в рамках различных моделей (изотропный и анизотропный континуум, атомная модель, учет электронной подсистемы), причем эти модели применяются для определения смещений и объемных изменени1Г в кристалле, вызванных появлением дефекта, энергии дефекта, а также взаимодействия между точечными дефектами, приводящего к образованию их комплексов.  [c.7]

Представим себе кристалл, не oдepяiaщий точечных дефектов при температуре абсолютного нуля. В таком кристалле точечные дефекты кристаллической решетки могут возникнуть при нагревании в результате теплового возбуждения. В течение достаточно долгой выдержки кристалла при постоянной температуре и давлении система приближается к состоянию равновесия, в котором устанавливается определенная концентрация дефектов, равновесная при данных условиях. Такими точечными дефектами являются появившиеся в результате теплового возбуждения вакансии и межузельные атомы металла, а такн е атомы в чужих подрешетках упорядоченного сплава стехиометрического состава. Равновесная концентрация таких дефектов при абсолютном нуле равна нулю.  [c.34]

На характер К. к. р. существенное влияние оказывают дефекты в кристаллах. Точечный дефект приводит к локальному искажению решётки и может вызвать локальные колебания, частоты к-рых попадают в запрещённые зоны бездефектного кристалла. Нор мальные колебания кристалла с точечным дефектом не являются плоскими волнами они имеют вид либо сходящихся к дефекту или расходящихся от него колебаний типа сферич. волн с центром в точке расположения дефекта (сплошной спектр частот), либО полностью локализованных у дефекта колебаний (локальные частоты). Тяжёлая примесь в кристалле порождает квазилокальное колебание, частота к-рого попадает в низкочастотную часть акустич. полосы частот.  [c.404]

Диффузионная пластичность осуществляется посредством направленной миграции по объёму и поверхности кристалла точечных дефектов кристаллич. решётки — вакансий и межузельных атомов. Те и другие зарож- ОЗЗ  [c.633]

Согласно этой модели, динамические характеристики движения дислокаций обусловлены диффузионноконтролируемым механизмом, по ко-т>ррому движение дислокаций определяется скоростью перемещения ступенек, генерирующих и поглощающих из кристалла точечные дефекты.  [c.165]

Атом примеси — точечный дефект кристалла, который характеризуется наличием в кристаллической решетке примесных атомов, отличающихся от атомов, составляющих тело кристалла. Примесный атом может присутствовать в кристалле в качестве атомл, внедренного п междоузлие, или же в качестве атома, заместившего различные атомы кристалла.  [c.40]

Экспериментально установлено, что нластич. деформация монокристаллов протекает тремя основными способами скольжение (движение полных дислокаций, вектор р юргерса Ь к-рых равен вектору решетки а в плоскости скольжения), двойникование (движение частичных дислокаций с Ь с а), диффузия точечных дефектов (обычно связанная с переползанием дислокаций). Во всех случаях, когда микромехапизм нластич. деформации установлен, он заключается в движении дефектов кристаллов. Деформация становится макроскопически наблюдаемой, когда число движущихся дислокаций (или вакансий) и длина их пробега достаточно велики [см. ниже ф-лу (Г)]- Это имеет место при нек-ром минимальном напряжении а .  [c.40]

ДЕФЕКТЫ кристаллической решётки (от лат. (1е ес1из — недостаток, изъян), любое отклонение от её идеального периодич. ат. строения. Д. могут быть либо атомарного масштаба, либо макроскопич. размеров. Образуются в процессе кристаллизации, под влиянием тепловых, механич. и электрич. воздействий, а также при облучении нейтронами, эл-нами, рентг. лучами, УФ излучением (см. Радиационные дефекты), при введении примесей и т. п. Различают точечные Д., линейные Д., Д.,образующие в кристалле поверхности, и объёмные Д. Простейшим точечным Д. явл. вакансия — узел крист, решётки, в к-ром отсутствует атом. В кристаллах могут присутствовать чужеродные атомы или ионы, замещая осн. ч-цы, образующие кристалл (примесные), или внедряясь между ними (междоузлия). Точечными Д. явл. также собств. атомы или ионы, сместившиеся из норм, положений (междоузельные атомы), а также центры окраски — комбинации вакансий с электронами проводимости или с дырками и др. В ионных кристаллах точечные Д. возникают парами. Две вакансии противоположного знака образуют т. н. дефект Шотки. Пара, состоящая из междоузельного иона и оставленной им вакансии, наз. дефектом Френкеля.  [c.152]

В любом реальном кристалле всегда имеются дефекты строения. Дефекты кристаллического строения подразделяются по геометрическим признакам на точечные (нульмерные), линейные (одномерные) и поверхностные (двумерные).  [c.19]

Полученные результаты объясняются на основе представлений о возникновении регулярных диссипативных структур (РД< ) дефектов в Процессе образования остаточного нарушенного слоя При множественном локальном микроразрушении поверхности кристалла. РДС формируется из метастобильных комплексов неравновесных точечных дефектов, взаимодействующих через упругие и электрические поля и профиль распределения которых промодулирован дислокационным каркасом в области вдавливания абразивных гастиц. Переход кристалла после обработки в новое квазиравновесное состояние сопровождается распадом РДС, при котором возможны локальные фазовые переходы, проявляющиеся как отрицательная мнкрог10лзу4есть кремния. Обсуждаются аспекты практического использования обнаруженного явления для оптимизации механической обработки монокристаллов.  [c.91]

Точечные (нульмерные) дефекты. Само их название свидетельствует о том, что нарушения структуры локализованы в отдельных точках кристалла. Размеры указанных дефектов во всех трех измерениях не превышают одного или нескольких межатомных расстояний.  [c.85]



Смотреть страницы где упоминается термин Дефекты кристаллов точечные : [c.89]    [c.28]    [c.49]    [c.235]    [c.578]    [c.509]    [c.54]    [c.501]    [c.14]    [c.166]    [c.147]    [c.418]    [c.473]    [c.49]    [c.193]   
Физико-химическая кристаллография (1972) -- [ c.217 ]



ПОИСК



Группа симметрии кристалла с точечным дефектом

Дефекты в кристаллах

Дефекты в кристаллах дефектов

Дефекты в кристаллах термодинамика точечных дефектов (Френкеля, Шоттки или смешанных)

Дефекты в кристаллах точечные, линейные и двумерные

Дефекты точечные

Дислокации в кристаллах и точечные дефекты кристаллов

Некоторые аспекты оптических свойств кристаллов с нарушенной симметрией точечные дефекты и внешние напряжения

Точечные дефекты II 234. См. также Дефекты в кристаллах

Точечные дефекты в ковалентных и ионных кристаллах

Точечные и линейные дефекты в кристаллах НБС



© 2025 Mash-xxl.info Реклама на сайте