Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решетка кристаллическая пространственная

Рениевый эффект 532 Рентгеновские лучи 36 Решетка кристаллическая пространственная 22  [c.645]

Дли определения положения атомных плоскостей (проходящих через атомы) в кристаллических пространственных решетках пользуются индексами hkl), представляющими собой три целых рациональных числа, являющихся величинами, обратными отрезкам осей, отсекаемым данной плоскостью на осях координат. Единицы длины  [c.17]

В основе создания сверхпрочных материалов лежит современное представление о дислокациях (искажения атомно-кристаллических пространственных решеток), как о первопричине наблюдающегося расхождения между реальной прочностью металлов и теоретической, предсказываемой на основании величины атомных связей в кристаллических решетках.  [c.171]


Двухвалентные окислы, карбиды, нитриды и силициды а-фазы. Как указывалось выше, все материалы этой группы имеют в основном кубическую кристаллическую решетку одинаковой пространственной конфигурации (рис. 3-2). Поэтому при определении частоты собственных колебаний любого соединения группы ХУ можно пользоваться выражением (2-29). Если мы обозначим массу иона соответствующим индексом (х — для массы металлического иона и у — для неметаллического), то выражение (2-29) примет следующий вид  [c.76]

Для наглядного представления внутренней структуры кристалла применяется способ изображения его с помощью пространственной кристаллической решетки. Кристаллической решеткой называется пространственная сетка, узлы которой совпадают с центрами атомов или молекул в кристалле (рис. 99).  [c.90]

Любое твердое тело состоит из атомов, т. е. представляет собой совокупность ядер и электронов. В кристаллических твердых телах ядра атомов располагаются в узлах кристаллической решетки, обладающей пространственной периодичностью. В аморфных телах расположение ядер более или менее случайно.  [c.210]

Отправная точка теории неупорядоченных твердых веществ — отсутствие дальнего порядка в расположении атомов. Однако поскольку атомные радиусы определяются в значительной мере межчастичными взаимодействиями в самом атоме, то расстояния между атомами в неупорядоченных веществах определяются (при одинаковом типе связи) в основном собственными радиусами атомов. Поэтому для аморфных веществ характерно расположение атомов в виде случайной сетки при сохранении ближнего порядка в расположении атомов (рис. 12.2, б). Подобный тип неупорядоченного расположения атомов часто называют топологическим [б5, 66], в отличие от композиционного, характерного для неупорядоченного расположения атомов разного сорта по узлам пространственной решетки кристаллических сплавов.  [c.275]

Строение и дефекты твердых тел. Кристаллическая решетка — это присущее кристаллическому состоянию вещества регулярное расположение частиц (атомов, ионов, молекул), характеризующееся периодической повторяемостью, в трех измерениях. Полное описание кристаллической решетки дается пространственной группой, параметрами элементарной ячейки, координатами атомов в ячейке. В этом смысле понятие кристаллической решетки эквивалентно понятию атомарной структуры кристалла. Русский ученый Е. С. Федоров почти на 40 лет раньше, чем были найдены методы рентгеноструктурного анализа, рассчитал возможные расположения частиц в кристаллических решетках различных веществ. Он подразделил кристаллы на 32 класса симметрии, объединяющих 230 возможных пространственных групп. Кристаллы могут различаться по двойному лучепреломлению, по пьезо- и пироэлектрическим свойствам, образованию адсорбционных центров, работе выхода электронов и т. п.  [c.11]


Кристаллическими называют твердые вещества, в которых атомы расположены в пространстве в строго определенном порядке. Все металлы являются кристаллическими веществами. Для описания кристаллической структуры металлов пользуются понятием кристаллической решетки. Кристаллическая решетка - это воображаемая пространственная сетка, в узлах которой расположены атомы. Наименьшая часть кристаллической решетки, определяющая структуру металла, называется элементарной кристаллической ячейкой. Элементарная ячейка повторяется во всех трех измерениях и полностью характеризует структуру кристалла.  [c.9]

Изменение строения металла. Сталь имеет кристаллическое строение. Кристаллическое строение вещества обусловливается тем, что его атомы располагаются в определенном порядке, образуя так называемую атомно-кристаллическую пространственную решетку, характерную для каждого металла. Атомы в зависимости от температуры металла могут менять свое расположение в пространственной решетке, что приводит к изменению строения, т. е. к структурным превращениям металла, обусловливающим изменение его свойств.  [c.147]

Граница зерен — это поверхность, по обе стороны от которой кристаллические решетки различаются пространственной ориентацией (рис. 1.7). Эта поверхность является двумерным дефектом, имеющим значительные  [c.12]

Ответ. Рассмотрим случай, когда в каждом узле пространственной решетки размещены идентичные атомы. Если на такую решетку направить рентгеновские лучи определенной длины волны, то электроны атомов кристалла начнут вынужденно колебаться и станут вторичными источниками рентгеновского излучения, испускающими сферические волны, центрами которых являются атомы. Это вызывает взаимную интерференцию сферических волн, которые испускаются отдельными узлами решетки. Поэтому пространственную кристаллическую решетку можно использовать как объемную дифракционную решетку. В данном случае положим для упрощения, что оси решетки распо-  [c.35]

Мы закончим эту книгу кратким обсуждением эффектов нарушения симметрии — проблемы, интерес к которой постоянно растет. До сих пор мы изучали максимальную симметрию кристалла, т. е. кристаллическую пространственно-временную группу 3, содержащую в качестве подгруппы пространственную группу , и следствия этой симметрии для динамики решетки и связанных с ней оптических свойств. Нарушение симметрии может происходить разными способами. Например, п кристалл могут быть введены примеси или другие дефекты различной степени сложности, к кристаллу могут быть приложены внешние обобщенные напряжения. Полная система обладает теперь более низкой симметрией. В благоприятных случаях симметрия такой системы остается достаточно высокой, чтобы анализировать интересные эффекты, обусловленные симметрией. Группой симметрии составной или примесной системы является некоторая нетривиальная подгруппа или группы или . Принципиальная схема анализа в таких случаях заключается в установлении соотношений между свойствами, которые ранее классифицировались по группе или идеального кристалла, и теми же свойствами, но классифицируемыми теперь по группе или .  [c.223]

Кристаллографические обозначения атомных плоскостей. Для определения положения атомных плоскостей (проходящих через атомы) в кристаллических пространственных решетках пользуются индексами /г, к, I, представляющими собой три целых рациональных числа, являющихся по значениям обратными отрезкам, отсекаемым данной плоскостью на осях координат. Единицы длины вдоль этих осей выбирают равными длинам ребер элементарной ячейки.  [c.17]

Для описания кристаллической структуры металлов пользуются понятием кристаллической решетки. Кристаллическая решетка - это воображаемая пространственная сетка, в узлах которой располагаются атомы (ионы), образующие металл. Частицы вещества (ионы, атомы), из которых построен кристалл, расположены в определенном геометрическом порядке, который периодически повторяется в пространстве. В отличие от кристаллов в аморфных телах (стекло, пластмассы) атомы располагаются в пространстве беспорядочно, хаотично.  [c.4]


Кристаллическое строение можно представить себе в виде пространственной решетки, в узлах которой расположены атомы (рис. 3).  [c.21]

Расположение атомов в кристалле весьма удобно изображать в виде пространственных схем, в виде так называемых элементарных кристаллических ячеек. Под элементарной кристаллической ячейкой подразумевается наименьший комплекс атомов, который при многократном повторении в пространстве позволяет воспроизвести пространственную кристаллическую решетку.  [c.22]

Как указывалось ранее, кристаллическая решетка металла, подвергнутого холодной обработке давлением, искажается в ней возникают напряжения, повышается количество дефектов решетки изменяется тонкая структура металла — блоки мозаики измельчаются, зерна металла раздробляются, а равноосная форма их (наблюдавшаяся до деформации) теряется. Осколки зерен получают продолговатую форму, вытягиваясь в направлении действия деформации при растяжении и перпендикулярно к направлению при сжатии. Кристаллические решетки зерен приобретают определенную пространственную ориентировку, называемую текстурой деформации. Микроструктуру металла после холодной деформации называют волокнистой.  [c.87]

Рассмотренный случай дифракции на трехмерной решетке имеет исключительно важное значение. Он осуществляется практически при дифракции рентгеновских лучей на естественных кристаллах. Лучи Рентгена представляют собой электромагнитные волны, длина которых в тысячи раз меньше длин волн обычного света. Поэтому устройство для рентгеновских лучей искусственных дифракционных решеток сопряжено с огромными трудностями. Мы видели, что трудность эта может быть обойдена путем применения лучей, падающих на решетку под углом, близким к ЭО". Однако дифракция рентгеновских лучей была осуществлена задолго до опытов с наклонными лучами на штрихованных отражательных решетках. По мысли Лауэ (1913 г.), в качестве дифракционной решетки для рентгеновских лучей была использована естественная пространственная решетка, которую представляют собой кристаллы. Атомы и молекулы в кристалле расположены в виде правильной трехмерной решетки, причем периоды таких решеток сравнимы с длиной волны рентгеновских лучей. Если на такой кристалл направить пучок рентгеновских лучей, то каждый атом или молекулярная группа, из которых состоит кристаллическая решетка, вызывает дифракцию рентгеновских лучей. Мы имеем случай дифракции на трехмерной решетке, рассмотренный выше. Действительно, наблюдаемые дифракционные картины соответствуют характерным особенностям дифракции на пространственной решетке.  [c.231]

Кристалл одного вещества заменить кристаллом другого. Явлению этому можно дать полное количественное истолкование, если допустить, что рентгеновские лучи суть волны, испытывающие дифракцию на пространственной решетке, каковой является кристалл. Действительно, кристалл представляет собой совокупность атомов, расположенных в виде правильной пространственной решетки. Расстояние между атомами составляет доли нанометров (для кристалла каменной соли, например, расстояние от Ыа до С1 равно 0,2814 нм). Каждый атом решетки становится центром рассеяния рентгеновских волн, когерентных между собой, ибо они возбуждаются одной и той же приходящей волной. Интерферируя между собой, эти волны дают по известным направлениям максимумы, которые вызывают образование отдельных дифракционных пятнышек на фотографической эмульсии. По положению и относительной интенсивности этих пятнышек можно составить представление о расположении рассеивающих центров в кристаллической решетке и об их природе (атомы, атомные группы или ионы). Поэтому явление дифракции, будучи важнейшим и непосредственным доказательством волновой при-  [c.408]

На структурном факторе (амплитуде) чрезвычайно сильно сказываются кристаллографические особенности кристаллической структуры ее элементы симметрии, тип решетки, пространственная группа симметрии. Рассмотрим примеры. Если решетка объемно-центрированная, то каждому атому в точке с координатами Xj, У], Zj соответствует атом с координатами V2, У3+Ч2, 2j+V2- В выражении для структурной амплитуды ( После преобразования (1.31) по формуле Эйлера) возникнут две пары членов  [c.45]

В твердых телах порядок расположения атомов определенный, закономерный, силы взаимного притяжения и отталкивания уравновешены и твердое тело сохраняет свою форму. Атомы кристаллических тел, располагаясь в объеме тела, образуют пространственные решетки - правильные геометрические формы кубы, призмы, ромбоэдры и октаэдры.  [c.16]

Решетки кристаллические пространственные 27, 28, 33 Рихарта — Ныомарка гипотеза 284 Робинсона гипотеза оценки накоплений деформации ползучести 445 Рэнкина гипотеза см. Максимального нормального напряжения гипотеза  [c.618]

Как известно, все тела состоят из большого количества атомов, отделенных друг от друга промежутками ничем не заполненного пространства. Атомы удерживаются силами сцепления, совершая колебания большой частоты возле точек равновесия. Поскольку атомы разных металлов различны, каждый металл имеет свои определенные свойства. Эти свойства зависят от расположения атомов между собой, характера их связей, расстояния между ними. Если изменить расстояние между атомами или порядок их расположения, изменятся и свойства металла. В аморфных телах (смола, стекло, канифоль) атомы расположены беспорядочно. В металлах они находятся в определенном геометрическом порядке, образуя кристаллы, поэтому металлы являются кристаллическими телами. Металлы различаются не только порядком расположения атомов, но и строением кристаллической решетки. Кристаллическая решетка представляет собой воображаемую пространственную сетку, состояпцую из элементарных ячеек, в узлах которой находятся атомы. Атомы изображаются условно — в виде шариков.  [c.6]


Все металлы имеют кристаллическую структуру, т. е. состоят из атомов, располагающихся в пространстве в строго определенном для каждого металла или его аллотропического изменения порядке. Можно представить, что атомы при этом занимают углы или грани решетки, называемой пространственной кристаллической решеткой. Элементы, из которых состоит решетка, называются элементарными ячейками. Пространственные решетки различных элементов различаются между собой формой и размерами элементарной ячейки. Расположение атомов в кристаллических телах нельзя увидеть при помощи микроскопа, так как атомы металла имеют чрезвычай-7  [c.99]

В кристаллическом силикате ионы металлов и силикат-анион располагаются определенным порядком в жесткой решетке, слагая пространственный правильный каркас. При синтезе силикатов используемый щелочной силикат несет в себе из-за наличия равновесия полимеризации силикат-ионов элементы нестехиоме-трического состава. Даже при высоком pH 3, когда силикат-ион находится в иопомерпом состоянии, небольшая добавка раствора соли двухвалентного металла вызывает интенсивную полимеризацию. Образующиеся при этом полисиликат-ионы имеют различную степень полимеризации и вызывают в дальнейшем осаждение гидросиликатов металла нерегулярного состава.  [c.101]

Металлические кристаллы. Металлическое состояние характеризуется сближением атомов и наличием в комплексе атомов неустойчивых внешних электронов, утративших связь с определенными атомами и свободно передвигающихся между образовавшимися положительными ионами. Это определяет электрические, магнитные и тепловые свойства кристаллов. Это же приводит к упорядочению связи в системе положительных ионов, к образованию так называемой металлической связи, характеризующейся расположением атомов (ионов) по геометрически правильным построениям, внутри которых наблюдается периодическая повторяемость фигур в трех измерениях. Такие построения называют кристаллическими решетками, а пространственные фигуры, определяемые минимальным числом атомов (ионов) и позволяющие путем переноса этих фигур в трех измерениях получить кристаллическую решетку, называют элементарнойячейкой.  [c.17]

Книга построена следующим образом. В 1—65 описываются структура, неприводимые представления и коэффициенты Клебша — Гордана для кристаллических пространственных-групп. В 66—ПО теория кристаллической симметрии с учетом сопредставлений применяется к классической динамике решетки. В 111—118 и в т. 2, 1—6 приводится квантовая теория колебаний кристаллической решетку и теория инфракрасного поглощения и комбинационного рассеяния света. Здесь же в общем виде показана полезность применения теоретико-группового анализа к задачам такого типа. Наконец, в т. 2, 7—36 дается детальное применение общей теории к оптическим спектрам инфракрасного поглощения и комбинационного рассеяния света для диэлектриков со структурой алмаза и каменной соли (пространственные группы 0 и 0 ). Даны примеры идеальных и неидеальных кристаллов обоих типов.  [c.10]

Существует ряд схем и способов описания вариантов взаимного расположения атомов в кристалле. Взаимное расположение атомов в одной из плоскостей показано на схеме разме-ш,ения атомов (рис. 3). Воображаемые линии, проведенные через центры атомов, образуют решетку, в узлах которой располагаются атомы (положительно заряженные ионы) это так называемая кристаллографическая плоскость. Многократное повторение кристаллографических плоскостей, расиолол енных параллельно, воспроизводит пространственную кристаллическую решетку, узлы которой являются местом расположения атомов (ионов). Расстояния между центрами соседних атомов измеря-  [c.22]

Различие отдельных зерен состоит в различной пространственной ориентации кристаллической решетки (рис. 6). В общем случае ориентация кристаллической решетки в зерне случайна, с равной степеньЕо вероятности может встретиться любая ориентация ее в пространстве.  [c.27]

VI е т а л л и ч е с к а я связь отличается тем, что валентные электроны являются общими для всего кристалла. Металл пред-ста ляет собой совокупность пространственной решетки, построенной из положительных ионов, возникающих в результате отщепления от каждого из атомов одного или нескольких валентных электронов, и этих отщепившихся электронов, движущихся внутри ренлетки и взаимодействующих как с ионами, расположенными в узлах решетки, так и друг с другом. Электроны не принадлежат определенным атомам. Они непрерывно н бсс.чоря-дочно перемещаются внутри кристаллической решетки, переходят от одного атома к другому, связывая их. Скопление электронов, осуществляющих. металлическую связь, получило название элгектронного газа.  [c.9]

Это уравнение называют логарифмическим. Соответственно, график, построенный в координатах у — g t + onst) или у — — Ig t (при t > onst) имеет вид прямой линии. Логарифмическое уравнение, впервые полученное Тамманном и Кестером [11], отражает поведение многих металлов (Си, Fe, Zn, Ni, Pb, d, Sn, Mn, Al, Ti, Та) на начальных стадиях окисления. Вначале справедливость этого уравнения ставилась под сомнение. Были сделаны попытки вывести уравнения на основе предположений о существовании специфических свойств оксидов, таких как наличие диффузионных барьеров и градиентов ионной концентрации и других. Эти предположения не получили экспериментального подтверждения. С другой стороны, было показано, что логарифмическое уравнение можно вывести из условия, 4TQ скорость окисления контролируется переходом электронов из металла в пленку продуктов реакции, причем эта пленка имеет пространственный электрический заряд во всем своем объеме (7, 12]. Преобладание заряда, обычно отрицательного, в оксидах вблизи поверхности металла, подобно электрическому двойному слою в электролитах, было установлено экспериментально. Таким образом, любой фактор, изменяющий работу выхода электрона (энергию, необходимую для удаления электрона из металла), например ориентация зерен, изменения кристаллической решетки или магнитные превращения (точка Кюри), изменяет скорость окисления, что и наблюдалось в действительности [13—15. Когда толщина пленки превышает толщину пространственно-заряженного слоя, определяющим фактором обычно становится скорость диффузии или миграции сквозь пленку. При этом начинает выполняться параболический закон, и ориентация зерен или точка Кюри перестают оказывать влияние на скорость окисления. Исходя из этого, можно сказать, что в начальной стадии оксидная пленка на металлах  [c.193]

Имея своим истоком идеи древних философов, теория атомного или дискретного строения вещества получила всеобщее признание только в начале 20-го столетия. Это было связано с успехами в области рентгеноскопии, когда для изучения микроструктуры вещества последнее помещалось в пучок рентгеновского излучения и на фотопластинке фиксировалось отображение пучка после прохождения его через слой исследуемого вещества. Диапазон длин волн рентгеновского излучения был сопоставим с межатомным расстоянием, и, при условии абсолютного равенства этих параметров, дифракция у - лучей на отдельных атомах приводила к появлению интерференционной картины. Это было интерпретировано следующим образом вещество состоит из дискретных элементов (атомов), которые образуют строго упорядоченную пространственную решетку с определенным значением периода реше1ки, характерного для данного вещества. Подобные исследования были проведены для различных веществ. Практически все твердые тела обнаруживают при рентгеновском облучении наличие интерференционной картины, тогда как в газах, жидкостях и стеклах интерференционную картину обнаружить не удавалось. В связи с этим возникло разделение вещества па упорядоченное, или кристаллическое, и неупорядоченное, или аморфное.  [c.47]


Образование интерференционной картины было интерпретировано следующим образом вещество имеет атомное строение, атомы образук т пространственную строго упорядоченную пространственную решетку с определенным значением периода решетки, характерного для данного вещества. Когда длина волны рентгеновского излучения совпадает с параметром решетки, возникает интерференционная картина. Оказалось, что практически для всех твердых тсл можно бьию обнаружить у-частки со строго упорядоченной интерференционной картиной [87], тогда как в газах, жидкостях и стеклах такую упорядоченность обнаружить не удалось. В связи с этим возникло разделение вещества на упорядоченное или кристаллическое и неупорядоченное или аморфное.  [c.192]

При описании дефектов стали считать положения частиц в узлах кристаллической решетки правильными, а в междоузлиях - неправильными или дефектными. В связи с этим для описания кристаллических веществ пришлось ввести два фундал<ентальных понятия - понятие пространственной решетки - геометрического построения, помогающего выявить законы симметрии или наборы симметричных преобразований кристаллической структуры, и понятие структуры кристалла - конкретного расположения частиц в пространстве [88]. Таким образом узаконивался факт неидеальности кристаллической структуры вещества в целом.  [c.193]

Усгювно и очень удобно изображать расположение атомов в кристаллическом твердом теле в виде кристаллографической плоскости, в узлах которой расположены атомы, а каждое кристаллическое тело состоит из множеств многократно повторяющихся кристаллографических плоскостей, расположенных параллельно, образующих пространственную кристаллическую решетку.  [c.16]


Смотреть страницы где упоминается термин Решетка кристаллическая пространственная : [c.14]    [c.800]    [c.15]    [c.176]    [c.18]    [c.11]    [c.15]    [c.17]    [c.367]    [c.260]    [c.14]    [c.8]    [c.350]    [c.11]    [c.46]   
Металловедение (1978) -- [ c.22 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.15 , c.18 ]



ПОИСК



Кристаллическая решетка

Кристаллические

Решетка кристаллическая пространственная гексагональная плотноупакованиая

Решетка кристаллическая пространственная кубическая гранеценгриоован

Решетка кристаллическая пространственная кубическая объемко-ценгрированная

Решетка кристаллическая пространственная тетрагольная

Решетка кристаллическая пространственная элементарная

Решетки пространственная

Элементарные ячейки пространственных кристаллических решеток



© 2025 Mash-xxl.info Реклама на сайте