Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения сплошных сред Силы, действующие в сплошных средах

Рассмотрим теперь уравнение для количества движения сплошной среды. Его можно получить, применяя законы движения Ньютона к бесконечно малому объему жидкости. Законы Ньютона можно рассматривать как равенство внешних сил, действующих со стороны окружающей жидкости на стационарный жидкий элемент, и скорости производства количества движения в объеме.  [c.39]

Уравнения магнитной гидродинамики представляют собой совокупность уравнений Максвелла для электромагнитного поля и обычных гидродинамических уравнений, описывающих движение сплошной среды — жидкости или газа. Связь этих двух групп уравнений обусловлена, с одной стороны, возникновением тока индукции нри движении проводящей среды в магнитном поле. Этот ток должен быть учтен в уравнениях Максвелла. С другой стороны, действие магнитного поля на токи в среде приводит к дополнительной электромагнитной объемной силе, которую следует учесть в гидродинамических уравнениях.  [c.2]


Раздел газовой динамики, в котором рассматриваются движения проводящего газа в электромагнитном поле, называется магнитной газодинамикой или магнитной гидродинамикой. В этой главе мы ограничимся выводом уравнений движения магнитной газодинамики. Как и прежде, считается, что газ является сплошной сжимаемой средой. Поэтому магнитная газодинамика так же, как динамика непроводящего газа, оперирует усредненными величинами, относя их к макрочастице. Эти средние значения параметров, характеризующих течение проводящего газа в поле действия электромагнитных сил, считаются, вообще говоря, непрерывными функциями координат и времени (за исключением поверхностей разрыва).  [c.151]

Обратим внимание на физическое содержание уравнений (3.8) и (3.9). Они выведены из закона количества движения системы, которая для случая сплошной среды образуется непрерывной совокупностью жидких частиц, составляющих объем W. Поэтому указанные уравнения можно рассматривать как специфические для жидкой среды формы уравнения количества движения. Но при сделанном предположении о постоянстве массы жидкого объема эти же уравнения можно вывести непосредственно из второго закона Ньютона или принципа Даламбера. Поэтому уравнения (3.8) и (3.9) можно также рассматривать как соответственно интегральную и дифференциальную формы второго закона Ньютона для жидкого объема. При этом левая часть уравнения (3.8) представляет собой суммарную инерционную силу, а правая — сумму действующих на массу жидкости внешних сил. В уравнении (3.9) правая часть выражает произведение массы на ускорение (силу инерции) для единичного объема, а левая — сумму действующих на него массовых и поверхностных сил.  [c.62]

Особое преимущество принципа Гамильтона обнаруживается в механике сплошных сред, поскольку этот принцип приводит не только к дифференциальным уравнениям задачи, но также и к краевым условиям, которым должны удовлетворять решения этих дифференциальных уравнений в частных производных. Во многих случаях необходимо вначале искать функцию Лагранжа L (входящую в выражение вариационного принципа) в зависимости от характера задачи. Это имеет место, например, при движении электрона в магнитном поле, когда действующая сила не имеет потенциала У далее — в теории относительности, когда L нельзя выразить с помощью выведенного нами выражения (4.10) для кинетической энергии. Здесь роль кинетической части принципа наименьшего действия играет выражение  [c.277]


Рассмотрим элемент стержня (рис. 7.1) при движении. Он отличается от элемента стержня, используемого в статике (см. рис. 3.3), тем, что его центр тяжести имеет поступательную скорость V и угловую скорость (О. в общем случае на элемент стержня могут действовать распределенные силы и моменты (рис. 3.3). При исследовании движения стержня внутренние силовые факторы (векторы Q и М), а также и, v и (о являются функциями s и t, что приводит к уравнениям в частных производных. В гл. 3 рассмотрены два случая возможных переменных при описании кинематики сплошной среды (переменные Эйлера и Лагранжа). На элемент стержня, показанного на рис. 7.1, действует сила инерции  [c.161]

Полная производная по времени от момента количества движения объема V сплошной среды с учетом собственных моментов равна сумме моментов внешних массовых и поверхностных сил, действующих на этот объем, и сумме собственных моментов, распределенных массовых и поверхностных сил. Переходя от поверхностных сил к тензору внутренних напряжений П по соотношению (1-2-19) и затем заменяя тензор напряжений П на тензор давления Р (Р = —П), уравнение (1-2-50) в отсутствие внешних сил (f=0) и внутренних сил и моментов (Т = К = 0) получаем в виде  [c.19]

Для любого объема V сплошной среды можно написать уравнение закона сохранения количества движения, в соответствии с которым скорость изменения количества движения равна сумме всех действующих на тело внешних поверхностных и объемных сил, т.е. [36, 47, 74, 7]  [c.182]

Это уравнение часто использовалось для расчета давления в течениях в пористых материалах. Нужно отметить, что хотя уравнение (8.5.8) в формальном отношении подобно по своему виду соотношению, приложимому и к вязкой несжимаемой жидкости как сплошной среде, в данном случае оно относится к движению в пористом теле. Ассоциированное поле скорости, описываемое уравнением (8.5.6), в этом случае не будет таким же, как для движения сплошной среды между твердыми стенками, описываемого уравнениями медленного движения. Если пористая среда не изотропна, К может зависеть от направления движения, и уравнение (8.5.8) не будет применимо. В равной степени его нельзя, конечно, использовать и для описания давления, передаваемого самими частицами слоя, или для анализа гидродинамических напряжений, действующих на обтекаемые тела и отличных от сил, направленных нормально к их поверхностям.  [c.465]

Как было указано в 2 гл. 1, необходимыми, но недостаточными уравнениями движения выделенного объема V сплошной среды будут равенство нулю главного вектора всех сил, действующих на этот объем, т. е.  [c.39]

Книга содержит систематическое изложение теоретической механики и основ механики сплошных сред. Большое внимание уделено фундаментальным понятиям и законам механики Ньютона — Галилея, законам изменения и сохранения импульса, кинетического момента и энергии, уравнениям Лагранжа, Гамильтона и Гамильтона — Якоби для класса обобщенно-потенциальных сил, а также законам механики сплошных сред, на единой основе которых рассматриваются идеальная и вязкая жидкости, упругое тело. В книге подробно излагаются-, задача двух тел и классическая теория рассеяния, законы изменения импульса, кинетического момента и энергии относительно неинерциальных систем отсчета, теория линейных колебаний систем под действием потенциальных, гироскопических и диссипативных сил, метод Крылова — Боголюбова для слабо нелинейных систем, методы усреднения уравнений движения. Книга содержит большое количество примеров интересных для физиков, в частности рассматриваются примеры на движения зарядов в заданных электромагнитных полях, задачи на рассеяние частиц, колебания молекул, нелинейные колебания, колебания систем с медленно меняющимися параметрами, примеры из магнитогидродинамики. Книга рассчитана на студентов и аспирантов физических специальностей.  [c.2]


Все тела состоят из атомов и молекул - на этом стоит физическая наука. Казалось бы, надо просто рассматривать любое тело как набор материальных точек со связями, соответствующими межатомным силам, применять к каждой из них законы Ньютона, и - получится решение любой задачи механики. Абсурдность такого подхода очевидна уже для нескольких частиц число подлежащих решению уравнений становится столь большим, что ни о какой возможности их решения нельзя говорить. Да и для описания движения огромного количества молекул вовсе не надо знать, как движется каждая из них и какие силы на нее действуют. Тела, содержащие огромное число плотно упакованных молекул, можно рассматривать как сплошные, не принимая в расчет движение отдельных атомов и молекул. Такая физическая модель для описания тел, содержащих громадные количества составляющих их частиц, называется моделью сплошной среды. Свойства сплошной среды описываются осредненными характеристиками ее. Для описания инерциальных свойств используется плотность р, определенная как масса в единице объема  [c.131]

Математическое описание гидромеханических процессов основано на известных из механики жидкости и газа общих уравнениях движения сплошной среды с использованием экспериментальных значений коэффициентов гидравлических сопротивлений, коэффициентов расходов и коэффициентов гидродинамических сил. Приложение общих уравнений и зависимостей гидромеханики к задачам динамики гидро- и пневмосистем имеет свои особенности, обусловленные принципом действия, конструкцией и режимами работы гидравлических и пневматических устройств. Характерными для гидро- и пневмосистем управления являются динамические процессы, при которых движение рабочих сред будет неустановив-шимся, т. е. в любой точке живого сечения потока давление, скорость и плотность среды зависят от времени.  [c.185]

Произведя несложные преобразования, можно показать, что соотношения (1.2.2) представляют собой теоремы о количестве и моменте количества движения систем. Уравнения (1.2.2) необходимы для описания движения механических систем, состояш,их из дискретных материальных точек. Если механическая система представляет собой сплошную среду, заполняюш,ую часть пространства V, то левые части уравнений (1.2.2) превратятся в определенные объемные интегралы, и массы отдельных точек преобразуются в бесконечно малые элементы д,т сплошной среды. При этом если на среду будут действовать п сосредоточенных сил и силы, распределенные по всем точкам сплошной среды, то необходимые уравнения движения сплошной среды будут иметь вид  [c.8]

При изучении механики сплошных сред задача состоит в исследовании движения сплошной среды под действием заданных сил. Таким образом, в уравнениях (3.3.5) компоненты массовой силы Р рассматриваются как величины заданные. Остальные величины, а именно плотность р, компоненты напряжения р у , Руу] р /, р у, Рухч Рхх и компоненты ускорения а , ау, (либо компоненты векторов скорости или смещения, через которые а выражается), являются величинами, подлежащими определению. Уравнения (3.3.5) представляют систему трех уравнений относительно 10 неизвестных. Следовательно, уравнения (3.3.5 ) являются, как очевидно, уравнениями необходимыми, но недостаточными. Недостающие уравнения для описания движения сплошных сред принципиально не могут быть найдены методами классической механики. Их можно получить, только рассматривая основные физические характеристики тех или иных сплошных сред и строя на основании их гипотезы  [c.41]

Во внутренних точках областей, в которых,х и Т достаточно гладки, уравнения количества движения и момента количества движения выражаются двумя законами движения Коши. Второй закон (III. 5-4) налагает требование симметричности напряжений. Первый закон (III.5-1) связывает поле напряжений с ускорением X в инерциальной системе отсчета, при условии что поле массовых сил Ь известно. Мы будем считать поле которое описывает действие на тело 3S некоторых неконкретизируемых внешних тел, заданным. Хотя на практике в лабораториях и в повседневной жизни встречается лишь несколько специальных массовых сил, например сила тяжести, — а на деле при рассмотрении конкретных задач механики сплошной среды мы даже обычно ограничиваемся случаем Ь = О, — в принципе у нас нет способа как-то очертить класс всех возможных полей массовых сил. Поэтому во всех рассуждениях, относящихся к совокупности всех возможных движений тела, мы вынуждены считать, что Ь не подчинено никаким ограничениям. Каковы бы ни были х и Т, полеЬ, удовлетворяющее уравнению баланса, количества движения, определяется соотношением (III. 5-1) или, если система отсчета неинерциальна, соотношением (III. 5-5). Таким образом, первый закон Коши вообще не налагает никаких ограничений на х и Т.  [c.149]

Чтобы быть более конкретными, рассмотрим случай чистой механики, хотя развиваемый здесь подход в следующих главах будет применяться к более широкой области физики сплошных сред. В этом случае определяющее уравнение является соотношением между силами и перемещениями (например, в пружине). Проще говоря, силы, приложенные к телу, являются причиной его движения и это результирующее движение имеет разный характер в зависимости от природы вещества тела. Тапример, большинство твердых материалов под действием слабого внешнего давления лишь слегка деформируется, тогда как жидкости начинают течь и более или менее быстро, в зависимости от их вязкости, принимают форму заключающих их емкостей. Интересующие нас силы в механике сплошных сред  [c.104]


Рассматривая часть пространства, заполненную сплошной средой, выделим в ней произвольную трехмерную область V. сграничеа-ную поверхностью 5. Принцип напряжений состоит в том,что движение тела V определяется уравнениями сохранения количества движения и сохранения момента количества движения, записанными так, как если бы тело V было абсолютно твердым, при этом действие той части ореды, которая лежит вне тела V, на это тело эквивалентно действию некоторой поверхностной силы . распределенной по 8. Аналитически это форлулируется так  [c.75]


Смотреть страницы где упоминается термин Уравнения движения сплошных сред Силы, действующие в сплошных средах : [c.238]    [c.67]    [c.67]    [c.183]    [c.118]   
Смотреть главы в:

Теоретическая механика  -> Уравнения движения сплошных сред Силы, действующие в сплошных средах



ПОИСК



Движение действие

Движение сплошной среды

Сила в сплошной среде

Сплошная среда и движение сплошной среды

Среда сплошная

Уравнение движения сплошной



© 2025 Mash-xxl.info Реклама на сайте