Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТЕОРИЯ Случайные величины

Изложены методы расчета размеров элементов конструкций (стержней, пластин, оболочек), обеспечивающих требуемую надежность при случайных воздействиях. Приведено решение задачи для случаев воздействий, имеющих различные законы распределения. Рассмотрены статический и динамический расчеты конструкций как по теории случайных величин, так и по теории случайных функций. Рассмотрены также вопросы оптимизации при случайных нагружениях. Книга содержит многочисленные примеры расчетов.  [c.2]


Точное и адекватное описание внешних воздействий и несущей способности материала конструкции требует привлечения методов теории вероятностей. В связи с этим на первый план выступает такая характеристика конструкции, как надежность, мерой которой является вероятность безотказной работы. В последние годы получили большое развитие методы расчета надежности конструкций, основанные как на теории случайных величин, так и на теории случайных функций.  [c.3]

В первой главе рассмотрены задачи нагружения, описываемые в рамках теории случайных величин. Получены удобные для практического применения соотношения для определения размеров поперечных сечений широкого класса элементов конструкций и схем нагружения (стержни, валы, пластины, оболочки и т.п.) при различных комбинациях законов распределения нагрузок и несущей способности.  [c.3]

П.1. НЕКОТОРЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ СЛУЧАЙНЫХ ВЕЛИЧИН  [c.100]

В этом случае для исследования вопросов, связанных с контролепригодностью, оказывается недостаточным использование математического аппарата теории случайных величин, а необходимо применение теории случайных процессов. Если поток требований на контроль является простейшим, т. е. обладает свойствами стационарности, ординарности, отсутствия последействия, то он может быть описан распределением Пуассона  [c.203]

Теория случайных функций позволяет лучше изучить и исследовать вопрос точности и надежности технологии машиностроения и теории резания, чем теория случайных величин. Однако по одной реализации невозможно выявить сущность изучаемого процесса получаемые при этом зависимости могут не подтвердиться в последующих реализациях. Поэтому необходимо исследовать пучок реализаций. Изменяющиеся размеры обрабатываемой детали, погрешность которых включает погреш-  [c.56]

В теории случайных величин характеристикой рассеяния значений случайной величины служит дисперсия (второй центральный момент). Существенно положительную величину + а называют средним квадратическим отклонением или стандартным отклонением. Она более удобна, чем дисперсия, так как ее размерность совпадает с размерностью измеряемой величины.  [c.61]

Перейдем теперь к одному из важнейших понятий теории вероятности — понятию случайной величины. Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно [9]. Случайная величина, принимающая отделенные друг от друга значения, которые можно пронумеровать, называется дискретной (прерывной). Если возможные значения случайной величины непрерывно заполняют какой-то промежуток, то она называется непрерывной случайной величиной.  [c.101]


Нормальное распределение (рис. 28) (часто называемое гауссовским) играет исключительную роль в теории вероятностей. Это наиболее часто встречающееся на практике распределение. Даже в тех случаях, когда распределение заведомо не является нормальным (например, для механических характеристик материала, которые всегда положительны), им нередко пользуются для приближенной замены реальных законов распределения, так как усечения обычно невелики. Кроме зтого, если случайная величина распределена нормально, то распределение остается нормальным и после линейного преобразования случайной величины (включая операции дифференцирования и интегрирования).  [c.107]

Как видно из выражений (П.78), (П.79) D[X t) является дисперсией случайной функции X t), а. K tx, t ) - моментом связи случайных величин Х 1 ) и X(12). Функцию в теории случайных функций называют корреляционной функцией. Через законы распределения они могут быть записаны следующим образом [34]  [c.117]

Более глубокое изучение таких нагрузок возможно лишь с помощью методов статистики и теории вероятности, которые применяются для изучения случайных величин.  [c.12]

Основная идея этого метода состоит в следующем. Величины, входящие в уравнения прочности, жесткости и устойчивости, как-то нагрузки, характеристики свойств материала, геометрические характеристики сечений,— рассматриваются не как величины постоянные, строго определенные, а как случайные величины (статистические совокупности), обладающие известной, иногда довольно значительной изменчивостью (рассеянием). Изучение таких величин возможно лишь на основе методов теории вероятностей.  [c.338]

Из теории вероятностей известно, что дисперсия суммы нескольких независимых случайных величин равна сумме дисперсий этих величин  [c.96]

Из курса теории вероятности известно, что функция распределения, так же как и плотность распределения, являются исчерпывающими характеристиками случайной величины. Однако во многих случаях достаточно полными характеристиками случайных величин оказываются моменты распределений  [c.280]

Заявками могут быть заказы на поставку комплектующих узлов и деталей, технические задания на проектирование и производство изделий, задачи, решаемые на предприятии, грузы, поступающие на транспортировку, и т.п. Очевидно, что параметры заявок, поступающих в систему, являются случайными величинами и при моделировании процессов могут быть известны лишь законы распределения параметров и числовые характеристики этих распределений. Поэтому анализ функционирования сложных систем, как правило, носит статистический характер. При этом в качестве математического аппарата моделирования используют теорию массового обслуживания, а в качестве моделей систем - системы массового обслуживания (СМО).  [c.192]

Теория вероятностей дает широкий ассортимент различных законов распределения случайных величин, которые могут быть использованы и для решения задач надежности. В табл. 10 приведены законы распределения, получившие наибольшее применение в теории надежности. Здесь t = Т — срок службы (наработка) до отказа случайная непрерывная, положительная величина. Основанием для использования того или иного закона распределения и оценки его параметров служат обычно опытные  [c.125]

Рассмотрим случай, который обычно считается в теории надежности основным, когда после возникновения каждого отказа восстанавливается работоспособность изделия и оно вновь работает до следующего отказа. Поскольку время до наступления отказа — случайная величина, получим случайный поток отказов.  [c.151]

Если имеется несколько одновременно действующих факторов, то суммарный эффект может быть оценен вероятностным методом сложения дисперсий отдельных процессов. Так, при начале работы машины могут действовать две основных причины— происходит рассеивание параметра X относительно центра группирования в пределах поля Л за счет погрешностей изготовления и настройки машины и рассеивание параметра X в пределах поля Ав в результате вибраций машины или деформаций ее элементов при работе в различных режимах. В этом случае поле рассеивания Ai параметра X будет складываться из Лц и Лв, Применяя теорему о сложении дисперсий независимых случайных величин [22], т. е. вероятностный метод сложения, получим  [c.156]


Если величины и о распределены нормально, то учитывая известные из теории вероятности соотношения между коэффициентом вариации случайной величины и средним квадратическим оы лоне-нием ее логарифма  [c.66]

Однако вычисление вероятности безотказной работы по формуле (4.15) в больщинстве случаев приводит к серьезным аналитическим трудностям. Если число элементов достаточно велико, можно воспользоваться известной в теории вероятности центральной предельной теоремой. В соответствии с этой теоремой сумма достаточно большого числа случайных слагаемых имеет приближенно нормальное распределение (для практических задач уже 10-12 слагаемых обычно бывает достаточно). Если известны среднее значение величин , равное Г, и ее дисперсия о , то сумма п таких случайных величин будет иметь среднее значение пТ и дисперсию по , т.е. искомая вероятность приближенно может быть записана как t  [c.155]

В теории вероятности ковариацией двух случайных величин хиу называется  [c.159]

Аналогично при имитации смешанных стратегий, где в качестве случайных параметров рассматривается удельный вес каждого способа производства в общем объеме производства промышленной продукции, также можно получить бесконечное множество смешанных стратегий. Поэтому для группировки исходных сочетаний случайных величин, полученных методами статистического моделирования, на третьем этапе методики прогнозирования ВЭР используются алгоритмы машинного распознавания образов. Решением задач теории распознавания образов является такое правило распознавания (классификации), которое соответствует экстремуму целевой функции — показателю качества распознавания (обучения). При этом правильный выбор информативных признаков, в которых сосредоточена наиболее существенная для распознавания информация, является одной из важнейших и необходимых предпосылок успешного решения задачи распознавания в целом. В данном случае полученные путем машинной имитации совокупности случайных параметров естественно интерпретировать как точки в многомерном пространстве, инфор-  [c.270]

При анализе и синтезе подобных систем возникает необходимость учета влияния внешнего воздействия, носящего характер стационарной случайной функции. В частном случае, когда последняя представляет собой, например, медленно изменяющуюся функцию, нелинейные характеристики могут быть сглажены при помощи автоколебаний, а затем подвергнуты обычной линеаризации [1]. Поэтому при исследовании подобных систем может быть использована линейная теория случайных функций. В более общем случае решение рассматриваемой задачи целесообразно провести, основываясь на статистической линеаризации существенных нелинейностей [2]. В работах [1, 2] предполагается, что параметры нелинейных звеньев системы автоматического регулирования являются детерминированными величинами.  [c.135]

Имеет место последовательность случайных величин ть Т2, Tft (см. рис. 1). В теории восстановления эта последовательность получила название процесса восстановления.  [c.14]

Класс А. Планы на основе теорем о суммировании независимых случайных величин. Особенность планов этого класса состоит в вычислении выборочной средней арифметической с последующим сопоставлением ее с границей регулирования. Планы А различаются только значениями трех параметров X, у, у .  [c.60]

Иное дело — выбор оптимальных статистических методов и операторов при проектировании комплекса обратной связи, осуществляемой с использованием вероятностной информации, с переработкой физических сигналов в команды для регулирующих устройств. Прежде всего это не производственная, а чисто техническая проблема, в которой полностью отсутствует организационный аспект, а экономический аспект сводится к детерминированной функции одного, реже нескольких технических параметров. Во-вторых, если говорить о математическом аспекте, особенно на непрерывных процессах, то на первый план выходит не теория распределения вероятностей случайной величины, а теория случайных функций.  [c.245]

Теоретической основой метода статистических испытаний является широко известный в теории вероятностей закон больших чисел, устанавливающий при определенных условиях предельное равенство среднего арифметического случайной величины математическому ожиданию этой случайной величины при бесконечном увеличении числа опытов. На основании количественной формы закона больших чисел и центральной предельной теоремы Ляпунова можно оценить точность метода статистических испытаний.  [c.15]

Отказы в теории надежности принято характеризовать временем их возникновения ), которое является случайной величиной. Точно так же и время восстановления, характеризующее восстанавливаемость, является случайной величиной. Как известно, характеристиками случайных величин являются законы распределения и параметры этих законов. Эти же характеристики используются для описания времени отказов и времени восстановления как случайных величин. Однако надежность, являясь свойством аппаратуры, не может быть полностью оценена только с помощью характеристик отказов и восстановления. Надежность — более широкое понятие, нежели отказ и восстанавливаемость. Поэтому надежность изделия можно оценить лишь с помощью большого числа критериев, в состав которых входят и те, чьи количественные значения являются характеристиками отказов и времени восстановления. При этом под  [c.20]

Однако для практических приложений описание случайной функции при помощи л-мерных законов распределения часто оказывается слож-ны.м. Поэтому вместо самих многомерных законов распределения в большинстве случаев ограничиваются заданием соответствуюших числовых параметров этих законов подобно тому, как в теории случайных величин часто вместо закона распределения этих величин указывают соответствующим образом выбранные параметры этих законов. В качест-  [c.116]


Технологические процессы можно исследовать на динамических моделях. В основу таких исследований положен анализ временных закономерностей. Динамические характеристики процессов обработки могут быть вычислены на основе теории случайных функций, являющейся, как и теория случайных величин, одним из разделов теории вероятностей. Примените аьно к автоматическому оборудованию они могут быть использованы для оптимального управления, повышения точности прогнозирования, улучшения качества продукции и надежности процесса обработки.  [c.93]

Г] связаны линейной зависимостью. Если ov(< , 77) = О, случайные величины , rj называются некоррелированными. Если , 1] независимы и имеют конечные дисперсии, то они некор-релированы. Понятие К лежит в основе корреляционной теории случайных процессов.  [c.26]

Выбор метода построения модели должен учитывать особенности системы функциональных связей, характер распределения случайных значений Х/, а также требования к объему информации о выходных показателях У/. Для задач вероятностного анализа ЭМУ уу = /у (х,-) представляется в общем виде, как было видно из предыдущих рассуждений, сложными и нелинейными уравнениями, для которых не может быть гарантирована явновыраженность и дифференцируемость. Входные параметры являются, как правило, непрерывными в границах поля допуска случайными величинами, а вероятностные законы их распределения могут быть в принципе различны. Для выходных показателей обычно требуется полная статистическая характеристика на основе методов, используемых в теории вероятностей.  [c.131]

Многочисленные теории скрытых параметров по своему содержанию сводятся к попыткам найти код для тех или иных динамических переменных или квантовой механики в целом. В квантовой механике проекции спина частицы /1, на а и частицы Aj па Ь являются случайными величинами. Это означает, что частицы А и не несут на себе никакой кодированной записи проекций спина ( +.) или ( —). Вместе с тем квантовая механика утверждает, что проекции спина час-1ИЦЫ A на а и спина частицы Л 2 на Ь коррелированы между собой.  [c.418]

ОДНОГО И ТОГО же материала можно говорить не о постоянной характеристике, а о ее статистическом распределении. Если модуль упругости и предел текучести меняются в узких пределах и расчет по средним значениям достаточно достоверен, то прочность хрупких материалов и их структурных составляющих должна рассматриваться как случайная величина и отвлечься от ее статистического характера принципиально невозможно. Именно статистическая теория позволяет объяснить и оценить количественно так называемый масштабный эффект прочность большого изделия всегда оказывается меньше, чем прочность малой его модели (после пропорционального перерасчета, конечно). Изложение современных статистических теорий прочности заняло бы слишком много места, однако некоторые сведения нам представлялось необходимым сообщить. Эти сведения особенно существенны для понимания природы прочности современных композитных материалов, состоящих из полимерной или металлической матрицы, армированной угольным, борным илп иным высокопрочным волокном. Разброс свойств армирующих волокон довольно велик и для нопимания того, в какой мере эти свойства могут быть реализованы в композите, необходимо некоторое представление о статистической природе его прочности. Именно поэтому изложение элементов статистической теории будет дано ниже, в гл. 20.  [c.654]

Так называемые статистические теории прочности были разработаны первоначально в целях описания результатов испытаний на усталость и предсказания прочности элементов машин, находящихся под действием переменных нагрузок. Краткие сведения об усталости были сообщены в одном из параграфов предпоследней главы ( 19.10). Здесь мы заметим, что результаты испытаний обнаруживают большой разброс, и поэтому современная точка зрения на расчет изделий состоит в том, что мы не можем с абсолютной достоверностью гарантировать прочность изделия, а можем лишь утверждать, что вероятность его разрушения достаточно мала. В основе одной из таких статистических теорий лежит гипотеза слабого звена. Существо этой гипотезы состоит в следующем. Тело мыслится составленным из большого числа структурных элементов, каждый из которых имеет свою локальную прочность. Разрушение всего тела в целом происходит тогда, когда выходит из строя хотя бы один структурный элемент. Для массивных тел такое предположение чрезмерно упрощает фактическое положение дел для разрушения тела как целого, вероятно, необходимо, чтобы вышла из строя некоторая группа элементов, именно так строятся более сложные и совершенные теории. Но для моноволокна гипотеза слабого звена правильно отражает существо дела. Прямое микроскопическое обследование поверхности волокна — борного, угольного или иного — показывает, что на волокне всегда имеются разного рода дефекты — мелкие и крупные. Эти дефекты расположены случайным образом. Прочность образца волокна длиной I определяется прочностью его наиболее слабого дефектного места и, таким образом, является случайной величиной. Результаты испытаний партии из некоторого достаточно большого числа волокон п представляются при помощи диаграмм, подобных изображенной на рис. 20.3.1. Число волокон, разорвавшихся при напряжен1[и, ле-  [c.689]

При турбулентном движении жидкости скорость, давление и другие величины в каждой точке потока претерпевают нерегулярные пульсирующие изменения около некоторых средних значений. Поэтому для исследования турбулентных потоков возможно целесообразно использовать понятия теории вероятности в этом случае мгновенные значения механических характеристик рассматриваются как случайные величины,, а средние значения определяются как математические ожидания ). Чаще, однако, средние значения определяются как обычные средние по времени. Промежутки времени, за которые производится осреднение, должны быть достаточно большими по сравнению со временем отдельных пульсаций и должны быть малыми по сравнению со временем заметного изменения средних величин, если осреднённое движение нестационарно ).  [c.127]

Согласно определению теории вероятностей, начальные несовершенства — случайные величины, как показывают исследования реальных систем, достаточно малые по сравнению с соответствующими номинальными величинами, определяющими свойетва элемента. Например, для стержня, нагруженного на концах сосредоточенными силами, приложенными в центрах тяжести поперечных сечений (рис. 1.2), можно считать  [c.30]

Опыт показывает, что многократно повторяя измерение некоторой величины, мы получаем следующее отношение числа результатов измерений, которые попадают в любой выделенный интервал значений, к общему числу измерений, т. е. относительная частота попадания в выделенный интервал, является приблизительно постоянным числом, причем указанное отношение характеризуется определенным законом распределения. На этом основании к изучению как самих результатов измерения, так и их погрешностей применяют теоретико-вероятностную модель. Другими словами, появление в процессе многократных измерений того или иного значения величины является случайным собы-тием, которое можно исследовать с помощью теории вероятностей. В свою очередь, и погрешность измерения также является случайной величиной.  [c.71]


Напомним ряд формул из теории вероятностей. Рассмотрим непрерывную случайную величину X, принимающую значения только из промежутка (а, 61 и имеющую функцию плотности распределения вероятности р (л ), а также вторую случайную величину Л, связанную с X функционально швисимостью Л = г з (X). Математическое ожидание величит, Л — Е X pa 4HTbiBiieT H по формуле  [c.186]

Расчет размерных цепей на основе теории вероятностей и математической статистики базируется на правилах суммирования случайных величин, хара.ктеризующих рассеивание размеров. Такой расчет обеспечивает увеличение полей допусков звеньев  [c.232]

Кинематические цепи в отличие от размерных характеризуют векторным видом погрешностей. Основой математически обоснованного метода расчета случайных погрешностей размерных и кинематических цепей является суммирование в соответствии с правилами теории погрешностей независимых составляющих погрешности конечного звена цепи, т. е. отклонение размера замыкающего звена размерной цепи или положения ведомого звена кинематической цепи. При этом отклонения в размерах деталей в пределах допусков изготовления подчиняются законам распределения случайных величин погрешностей и должны суммироваться согласно формулам теории вероятностей. Величины, характеризующие центры группирования (наиболее вероятные иогрешности), должны суммироваться алгебраически, например 222  [c.222]


Смотреть страницы где упоминается термин ТЕОРИЯ Случайные величины : [c.5]    [c.65]    [c.26]    [c.90]    [c.13]    [c.89]    [c.201]    [c.113]    [c.114]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.281 ]



ПОИСК



Некоторые сведения из теории случайных величин

Случайная величина

Случайность

ТЕОРИЯ Случайные величины дискретные - Законы

ТЕОРИЯ Случайные величины непрерывные - Законы распределения

Теория случайные величины, вероятность



© 2025 Mash-xxl.info Реклама на сайте