Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сложный функционирования

Для правильного планирования и организации вычислительного процесса проектировщикам ОС приходится писать многочисленные и сложные модули обработки всевозможных прерываний, создавать дисциплину обслуживания задач в соответствии с их приоритетами, постоянно контролировать занятые и свободные области оперативной памяти, рационально распределять ее между конкурентными задачами, защищать наборы данных на внешних носителях от несанкционированного доступа, распределять между задачами ограниченное число внешних устройств и т. д. Естественно, что в результате получается очень сложная и громоздкая ОС, что порождает негативные стороны трудность освоения и эксплуатации, значительные затраты вычислительных ресурсов расходуются не на решение пользовательских задач, а на удовлетворение потребностей ОС. Но тем не менее без ОС невозможно эффективное функционирование современной ВС.  [c.85]


Организация обмена данными в ЕС ЭВМ осуществляется с помощью достаточно сложного механизма аппаратных и системных процедур. Всякая операция ввода-вывода выполняется по следующей иерархической схеме функционирования устройств центральный процессор управляет работой каналов ввода-вывода, каналы ввода-вывода управляют работой контроллеров, те, в свою очередь, управляют ВУ, Канал представляет собой специализированный процессор вво-да-вывода, который освобождает центральный процес-  [c.121]

Корродирующие металлы являются сложными системами, которые часто не допускают изменения только одного фактора за один раз, ибо эти системы столь динамичны и внутренне связаны, что изменение одного фактора служит причиной изменения других, иногда очень многих факторов. Успешное проведение коррозионных исследований часто невозможно без их планирования, так как для предсказания и проверки требуется построение математической модели объекта исследования, которая, в частности, может быть использована для выбора оптимальных условий функционирования объекта.  [c.432]

Геометрический синтез включает решение задач двух групп. Первая группа задач — задачи формирования (компоновки) сложных геометрических объектов (ТО) из элементарных ГО заданной структуры, возникающих, например, при оформлении деталировочного чертежа. Основным критерием геометрического синтеза сложных ГО является точность их воспроизведения. Вторая группа задач обеспечивает получение рациональной или оптимальной формы (облика) деталей, узлов или агрегатов, влияющей на качество функционирования объ-  [c.8]

Важно отметить, что прогресс в области АП требует усилий ученых и инженеров во многих сферах научно-технической деятельности, определяющих состояние и возможности различных средств автоматизации проектирования. Для проектирования новых сверхсложных объектов недостаточно только развивать средства вычислительной техники, необходимы новые подходы к математической формулировке задач и поиск методов их решения. Функционирование сложных программных систем не будет эффективным без удовлетворительного решения проблем информационного обеспечения. Не могут оставаться неизменными при развитии САПР организационные формы деятельности инженерных коллективов, формы документооборота, содержание подготовки инженерных кадров.  [c.107]

Банк данных — сложная информационно-программная система, функционирование которой невозможно выполнить полностью в автоматическом режиме. Контроль за ее состоянием и управление режимами осуществляется человеком либо группой лиц, называемых администратором банка данных. Администратор прежде всего составляет внешние и внутреннюю модели данных, управляет размещением информации на физических носителях. Второй важнейшей его обязанностью является поддержание целостности БНД. Для этого администратор выполняет восстановление БД после сбоев аппаратуры, запись и хранение копий, ведение системного журнала, где фиксируются все изменения, вносимые в БД, устранение избыточности данных и др.  [c.55]


САПР — это сложная система, которая может рассматриваться на различных уровнях декомпозиции и детализации. Наиболее укрупненными элементами САПР являются подсистемы, которые выделяются по функциональному признаку. Каждая подсистема решает в законченной форме достаточно самостоятельную группу задач автоматизированного проектирования. Представление САПР в виде взаимосвязанных функциональных подсистем соответствует верхнему (наиболее общему) уровню декомпозиции, с которого начинается изучение сложных, систем. Типовая структурная схема функционирования САПР на этом уровне приведена на рис. 1.1.  [c.17]

Известно, что при практической реализации тех или иных теоретических разработок в них зачастую вносятся существенные коррективы, даже если какая-либо концепция или теория казались, на первый взгляд, абсолютно фундаментальными и решающими в полном объеме конкретную проблему. Особенно это касается исследований, направленных на обеспечение надежного функционирования сложных технологических систем, основу которых составляют разнообразные гетерогенные материалы, многостадийные процессы добычи и переработки углеводородного сырья, жесткие режимы движения рабочего продукта внутри оборудования оболочкового типа, испытывающего воздействие коррозионных сред и механических нагрузок. Учесть влияние всех факторов, которые играют существенную роль в механизмах процессов, происходящих в таких системах, чрезвычайно сложно, а чаще всего невозможно. Поэтому в данном случае теоретические разработки могут служить лишь в качестве подхода к решению проблемы. Достижение же окончательного решения возможно только на пути использования всего накопленного практического опыта в той области, в которой проблема возникла.  [c.5]

Если механизм является составной частью (одним из иерархических уровней) более сложных систем (машин и агрегатов), то их эффективность оценивается о точки зрения системного подхода исходя из эффективности функционирования всей системы. Из этого следует, что критерий оптимальности является комплексной функцией, которая может состоять из ряда показателей, таких, как производительность, масса, габариты, надежность и виброустойчивость машин и др.  [c.147]

Заявками могут быть заказы на поставку комплектующих узлов и деталей, технические задания на проектирование и производство изделий, задачи, решаемые на предприятии, грузы, поступающие на транспортировку, и т.п. Очевидно, что параметры заявок, поступающих в систему, являются случайными величинами и при моделировании процессов могут быть известны лишь законы распределения параметров и числовые характеристики этих распределений. Поэтому анализ функционирования сложных систем, как правило, носит статистический характер. При этом в качестве математического аппарата моделирования используют теорию массового обслуживания, а в качестве моделей систем - системы массового обслуживания (СМО).  [c.192]

Для оценки долговечности сложного изделия применяют две категории показателей. Во-первых, это показатели, характеризующие выход за допустимые пределы основных технических характеристик (выходных параметров) изделия в целом. Это относится прежде всего к показателям, характеризующим точность функционирования, мощность, скорость, КПД и т. п. всего изделия. В этом случае основным показателем долговечности будет ресурс (или срок службы), связанный с выходом за допустимые пределы основных технических характеристик изделия и наступлением предельного состояния изделия, при котором дальней- шая его эксплуатация должна быть прекращена.  [c.24]

В сложных машинах и системах параметрические отказы элементов могут привести к отказу функционирования. Например, в многозвенном механизме, последнее звено которого совершает небольшое перемещение, в результате износа кинематических пар возможен случай, когда наличие зазоров приведет к тому, что ведомое звено вообще не будет перемещаться.  [c.41]

Большей сложностью обладают, как правило, автоматизированные системы. Чем сложнее система, тем более разнообразны требования к ее функционированию и тем на большее число выходных параметров устанавливаются нормативы. Сложная система работает, как правило, в широком диапазоне условий эксплуатации и при различных режимах.  [c.176]


Во-вторых, для сложной системы часто возможно восстановление работоспособности по частям, без прекращения ее функционирования. Например, в сложном технологическом комплексе допускается временное отключение отдельных участков для их ремонта и подналадки.  [c.177]

Анализ работоспособности сложной системы связан с изучением ее структуры и тех взаимосвязей, которые определяют ее надежное функционирование. Важную роль при этом играет выделение элементов, составляющих данную систему.  [c.177]

Эффективность системы. В связи с тем, что функционирование сложной системы связано с выполнением разнообразных задач в неодинаковых условиях эксплуатации, бывает трудно определить, является ли возникшее изменение выходных параметров машины отказом. В одних условиях работы эти изменения не повлияют на работоспособность изделия, в других может произойти снижение производительности, точности, скорости и других показателей, характеризуюш,их эффективность работы машины. Машина может, как правило, функционировать и при возникновении параметрических отказов.  [c.182]

Обычно, лишь малоответственные системы, к выходным параметрам которых не предъявляются достаточно жесткие требования и необходимо лишь функционирование отдельных узлов и элементов системы, можно рассматривать в виде расчлененных структур. Чем совершеннее изделия и чем выше требования к его параметрам, тем в большей взаимосвязи находятся все элементы системы. Разбивать сложную систему на независимые элементы и применять методы расчета Р (t), изложенные выше, можно для механических систем и машин в следующих основных случаях  [c.191]

Даже контрольные испытания, предназначенные только для определения соответствия выходных параметров сложных машин и систем требованиям ТУ, включая проверку правильности функционирования всех механизмов и определение эффективности системы, при которых не оценивается изменение начальных характеристик машины во времени, представляют трудную задачу.  [c.509]

Анализ потока отказов сложных систем. В процессе испытания сложных систем для оценки их выходных параметров и проверки правильности функционирования, а также при эксплуатационной апробации опытных образцов, как правило, возникают  [c.510]

На рис. 162 показана типичная кривая распределения наработок до отказа при производственном испытании автоматической линии для механической обработки ступенчатых валов [31 ]. Как видно из графика, частота отказов весьма высока и вероятность безотказной работы линии в течение t— ч Я (/) —> 0. Сюда включены все виды отказов, как, например, износ режущего инструмента, застревание заготовки в транспортном лотке, несрабатывание механизма загрузки из-за попадания стружки, отказы системы управления и др,, в основном связанные с нарушением правильности функционирования линии и требующие малых затрат времени на восстановление ее работоспособности. Аналогичные данные о потоке отказов получают при испытании таких сложных изделий как двигатели, транспортные машины (автомобили, самолеты), технологические комплексы различных отраслей промышленности. Для анализа отказов их обычно разбивают на категории по системам или узлам машины или по последствиям, к которым приводит отказ (см. гл. 1, п. 4).  [c.511]

Все это приведет к изменению представлений о передаточных функциях, об устойчивости системы, точности ее функционирования и других характеристиках и к необходимости разработки соответствующего математического аппарата. Развитие этого направления позволит в общей форме решать ряд сложных задач надежности.  [c.572]

Таким образом, задача управления надежностью больших систем энергетики чрезвычайно сложна и на сегодняшний день строгого научного решения не имеет. Часть исследователей видит ее решение в поиске вариантов развития или функционирования системы на основе минимизации суммы приведенных затрат в систему и математического ожидания ущерба у потребителей от перерывов энергоснабжения. Такой, на первый взгляд естественный, подход встречает следующие серьезные возражения [71—75].  [c.169]

В книге приводятся сведения, необходимые для понимания физической сущности взаимодействия энергии и окружающей среды. Все проблемы не могут быть детально исследованы в одной книге—слишком сложно взаимное влияние образа жизни общества и нормального функционирования окружающей среды и невозможно охватить проблемы этого взаимовлияния полностью. Цель данной книги — дать основу для понимания физических основ взаимодействия энергетики и окружающей среды, исследовать некоторые специфические проблемы этого взаимодействия, выделить нерешенные или трудно решаемые задачи й дать импульс для обдумывания их с научной точки зрения.  [c.10]

При этом нефтеперерабатывающее и нефтехимическое производство рассматривается как сложная иерархическая структура в плане организации и функционирования [3,4, 37].  [c.11]

Все системы, функционирование которых не носит детерминированного характера, относятся к категории сложных. Совокупность разнородных сложных систем образует большую систему. Большими системами являются все человеко-машин- ые комплексы. Технические и технологические системы могут относиться как к категории простых, так и сложных систем. Система обеспечения надежности — это большая организационно-техническая система.  [c.8]

Простые и сложные объекты. Феноменологически различие этих двух типов объектов с точки зрения надежности можно трактовать следующим образом. В числе состояний простого объекта отсутствуют частично работоспособные и частично рабочие состояния (см. 1.3.2). Для такого объекта отказ работоспособности соответствует скачкообразному переходу от состояния полной работоспособности к состоянию неработоспособности, а отказ функционирования -переходу из полностью рабочего в нерабочее состояние восстановление простого объекта определяется обратным переходом (см. пп. 1.4.1 и 1.4.2).  [c.75]


Сложный объект характеризуется наряду с другими частично работоспособными и частично рабочими состояниями, возникающими вследствие частичных отказов (работоспособности и функционирования).  [c.75]

Коэффициент сохранения эффективности [34, 48]. Прежде рассмо рим более подробно принцип оценки эффективности функционирования сложных систем, состояния которых нельзя однозначно разделить на два подмножества - полной работоспособности и неработоспособности. Для таких систем существует множество промежуточных состояний, в которых система функционирует с пониженным выходным эффектом.  [c.97]

Ясно, что при большой заблаговременности принятия решения относительно обеспечения надежности СЭ не имеет смысла говорить о каких-то сложных критериях отказов, нет смысла задавать большое число показателей. Задание таких показателей, как среднее время безотказной работы для характеристики безотказности или коэффициент обеспеченности продукцией, часто является достаточным. В то же время задание ПН для задач текущего планирования или оперативного управления может отличаться большей детализацией условий функционирования СЭ, критерии отказов и сами показатели могут отражать более тонкие стороны исследуемых процессов.  [c.103]

Строгое решение задачи вычисления вероятностей состояний системы с учетом того, что в различных интервалах AT j состав агрегатов, определяемый множествами rij, различен, приводит к необходимости исследования сложного нестационарного процесса функционирования восстанавливаемой системы. Если еще учесть, что характеристики надежности агрегатов системы различны, то данная задача становится практически неразрешимой.  [c.191]

Общие методы оценки эффективности сложных систем с учетом надежности элементов. Часто, говоря об отказах и нормальном функционировании (работоспособности), не упоминают о том, как устройство или система выполняет требуемые функции в про-224  [c.224]

Все известные методы векторной оптимизации непосредственно или косвенно сводят решаемые задачи к задачам скалярной оптимизации. Иначе говоря, частные критерии Fi(X), i=l, п, тем или иным способом объединяются в составной критерий F(X) =ф( 1(Х),. .., f (X)), который затем максимизируется (или минимизируется). Если составной критерий получается в результате проникновения в физическую суть функционирования системы и вскрытия объективно существующей взаимозависимости между частными критериями и составным критерием, то оптимальное решение является объективным. Однако отыскание подобной взаимозависимости чрезвычайно сложно, а может быть, и не всегда возможно. Поэтому на практике составной критерий обычно образуют путем формального объединения частных критериев, что неизбежно ведет к субъективности получаемого оптимального решения. Составной критерий иногда называют обобщенным или интегральным критерием.  [c.16]

Сделаем краткие выводы по выбору критериев оптимальности при автоматизированном проектировании технических объектов. Выбор критерия оптималыюсти является сложной методологической проблемой и, как правило, может производиться неоднозначно. Источником сложности этой проблемы прежде всего служит противоречивость целей, преследуемых при проектировании любого нового технического объекта. Стоимость и надежность функционирования, энергоемкость и производительность, микроминиатюризация и массогабаритные параметры всегда находились и будут находиться в противоречии друг с другом. Поэтому если в ТЗ на проектирование сформулировано, что требуется оптимизировать один из параметров проектируемого объекта при соблюдении ограничительных требований на остальные параметры, то необходимо сформировать частный критерий F( ). В этих случаях задача оптималь-  [c.26]

На функционально-логическом уровне необходим ряд положений, упрощающих модели устройств и тем самым позволяющих анализировать более сложные объекты по сравнению с объектами, анализируемыми на схемотехническом уровне. Часть используемых положений аналогична положениям, принимаемым для моделирования аналоговой РЭА. Во-первых, это положение о представлении состояний объектов с помощью однотипных фазовых переменных (обычно напряжений), называемых сигналами. Во-вторых, не учитывается влияние нагрузки на функционирование элементов-источников. В-третьих, принимается допущение об однонаправленности, т. е. о возможности передачи сигналов через элемент только в одном направлении — от входов к выходам. Дополнительно к этим положениям при моделировании цифровой РЭА принимается положение о дискретизации переменных, их значения могут принадлежать только заданному конечному множеству—алфавиту, например двоичному алфавиту 0,1 .  [c.189]

Большая размерность задач проектирования сложных технических систем и объектов делает целесообразным блочно-иерархический подход, при котором процесс проектирования разбивается на взаимосвязанные иерархические уровни. Структурный синтез составляет существенную часть процесса проектирования и также организуется по блочноиерархическому принципу. Это означает, что синтезируется не вся сложная система целиком, а на каждом уровне в соответствии с выбранным способом декомпозиции синтезируются определенные функциональные блоки с соответствующим уровнем детализации. Существуют различные способы классификации задач структурного синтеза. Так, в частности, в зависимости от стадии проектирования различают следующие процедуры структурного синтеза выбор основных принципов функционирования проектируемой системы, выбор технического решения в рамках заданных принципов функционирования, выпуск технической документации. В зависимости от типа синтезируемых структур различают задачи одномерного, схемного и геометрического синтеза. В зависимости от возможностей формализации различают задачи, в которых возможен полный перебор известных решений, задачи, которые не могут быть решены путем полного перебора за приемлемое время, задачи по-  [c.268]

Однако наибольшее значение в развитии у человека про-страпствекных представлений имеет зрительный аппарат и система целостных картин-образов, получаемых на оанове его функционирования. Внутренние механизмы зрительного восприятия составляют главный компонент понятия перцептивного мышления. Восприятие — это не пассивный процесс, в него включаются такие составляющие компоненты, как анализ, синтез, сравнение, обобщение, классификация. Сложность изучения этих механизмов сознания заключается в том, что они работают непроизвольно. По мнению многих исследователей [31], специфика восприятия как сложного интеллектуального процесса состоит в его неполной детерминированности стимулом, т. е. объектом восприятия. Восприятие трехмерных изображений имеет основной механизм, включающий два различных процесса 1) получение информации после беглого взгляда на объект 2) структурирование, организация первичных данных, осуществляемая в результате действий перцептивной интеграции.  [c.79]

Обращаясь к определенным выше понятиям прочности и жесткости, можно поставить условия o- =i [a], te =< [e], Д/ г [А/], которые следует считать условиями нормального функционирования (работы) стержня. Величины [а], [е], [Д/] соответственно называют допускаемыми напряжениями, деформациями и перемещениями и назначают по результатам экспериментов и исходя из опыта эксплуатации. Рассмотренный пример растяжения стержня, требующий уточнения ряда высказанных здесь положений, представляет собой предельно простой случай одномерной задачи, тогда как в элементах конструкций реализуется большей частью сложное напряженно-де4 ормированное состояние, определение которого представляет довольно трудную инженерную и математическую задачу.  [c.11]


Современное производство характеризуется все большей автоматизацией процессов, которая обеспечивает постоянный рост производительности труда. Развитие автомаФизации позволяет создавать большие технические системы, в состав которых входят вычислительные и управляющие устройства. Примером таких систем являются системы запуска и управления космическими аппаратами, единая автоматизированная система связи, система управления воздушным транспортом. Эти системы содержат много сложных составных частей, безотказная работа которых определяет правильное функционирование систем в де-  [c.15]

Объектами исследования в теории массового обслуживания являются сложные системы, в которых анализ процессов функционирования связан с исследованием прохождения через систему потока заявок (иначе называемых требованиями или транзак-тами). Разработчиков подобных сложных систем интересуют прежде всего такие параметры, как производительность (пропускная способность) проектируемой системы, продолжительность обслуживания (задержки) заявок в системе, эффективность использования имеющегося оборудования и других средств.  [c.192]

Во-первых, сложным системам свойственна в той или иной мере самоорганизация, саморегулирование или самоприспособле-ние, когда система способна найти наиболее устойчивое для своего функционирования состояние.  [c.177]

Все системы подразделяются на простые и сложные. Простыми являются системы, которые выполняют свои функции или обеспечивают выполнение всех своих целей строго детер-минированно. К ним относятся, например, автоматические системы, часы, станки с числовым программным управлением, автоматизированные системы управления производством. Функционирование таких систем может быть описано дифференциальными уравнениями.  [c.8]

Чем сложнее исследуемая система (с точки зрения структуры, физических процессов, характеризующих режимы функционирования, разнообразия средств обеспечения 1 адежности и др.), тем эффективнее использование математических моделей в качестве инструмента формирования решений. Системы же энергетики относятся к классу очень сложных систем в указанном смысле.  [c.11]

Для большинства сложных территориально-распределенных систем оказывается весьма затруднительным сформулировать понятие отказа в силу, прежде всего, наличия в системах определенной избыточности. В СЭ - это резервы мощности (производительности) источников энергии, запасы по пропускной способности линий электропередачи и магистральных трубопроводов, создание запаса газа в подземных газохранилищах, резервное топливо и т.п. Сложная по характеру избыточность позволяет обеспечивать функционирование системы на допустимом уровне после выхода из строя ее отдельных элементов и совокупностей элементов. При отказах элементов система начинает функционировать с худшими показателями качества, однако это может происходить столь постепенно, что твердо сказать система отказала или система нормально работает часто не представляется во.зможным [24, 25, 47, 60, 71, 85,132-134, 137-139]. Поэтому понятие отказа сложной системы на практике увязы-  [c.225]


Смотреть страницы где упоминается термин Сложный функционирования : [c.157]    [c.53]    [c.38]    [c.335]    [c.573]    [c.6]    [c.46]    [c.139]   
Надежность систем энергетики и их оборудования. Том 1 (1994) -- [ c.77 , c.80 ]



ПОИСК



Модели формирования и функционирования систем проектирования сложных объектов (на примере АСУП)



© 2025 Mash-xxl.info Реклама на сайте